
7 AD-AIGZ 3518 MISSISSIPPI STATE UNIV MISSISSIPPI STATE ENGINEERING-ETC FIG 17/1
I NVESTIGATION OF CEPSTRUM ANALYSIS FOR SEISMIC/ACOUSTIC SIGNAL -ETC(U)

JAN 81 F M INGELS, 6 KOLEYNI AFOSR-80-0086

UNCLASSIFIED MSSU-EIRS-EE-81-a AFOSR-TR-81-0603M



O .TR.- 1. 0 6 0
INVESTIGATION OF CEPSTRUM ANALYSIS

FOR

SEISMIC/ACOUSTIC SIGNAL SENSOR

RANGE DETERMINATION E YE Li

Electrical Engineering

FINAL REPORT

Submitted

by '!

., Q FRANK M. INGELS
GHASSEM KOLEYNI

Prepared for

AFOSR

AppWoved for pubIja releoarn;

distribution unlimited.

Mississippi State University MSSU-EIRS-EE-81-2
Mississippi State, MS 39762



COLLEGE OF ENGINEERING ADMINISTRATION

WILLIE L. MCDANIEL, PH.D.
DEAN, COLLEGE OF ENGINEERING

WALTER R. CARNES, PH.D.
ASSOCIATE DEAN

JOHN 1. PAULK, PH.D.
ASSOCIATE DEAN

LAWRENCE J. HILL, M.S.
DIRECTOR, ENGINEERING SERVICES

CHARLES B. CLIETT, M.S.
AEROSPACE ENGINEERING

WILLIAM R. FOX, PH.D.
AGRICULTURAL & BIOLOGICAL ENGINEERING

JOHN L. WEEKS, JR., PH.D.
CHEMICAL ENGINEERING

ROBERT M. SCHOLTES, PH.D.

CIVIL ENGINEERINGI
B. J. BALL, PH.D.
ELECTRICAL ENGINEERING

W. H. EUBANKS, M.ED.
ENGINEERING GRAPHICS

FRANK E. COTTON, JR., PH.D. For additional copies or informration
INDUSTRIAL ENGINEERING address correspondence to

C. T. CAR LEY, PH.D.
MECHANICAL & NUCLEAR ENGINEERING ENGINEERING AND INDUSTRIAL RESEARCH STATION

DRAWER DEELDRED W. HOUGH, PH.D. MISSISSIPPI STATE UNIVERSITY
PETROLEUM ENGINEERING MISSISSIPPI STATE MISSISSIPPI 39762

TELEPHONE 6011 325-2266

Mississippi Slate Universt does not discriminate on the basis 01 face color religion national origin
%e, age of handicap

in conformrity with Title IXot the Education Amendments of 1972 and Section 504 of the Rehatilitation
Act tit 1973 Dr T K Martin. vice President. 610 Allen Hall P 0 Drawer J Mississippi State Mississippi
19762 oftice telephone nu~mber 325-3221 has been designated as the repSIbl employee to
coordinate ollorts to carr p t responsib ities and make investigation 0f corrplairrrs relating to
iionrlscrirnnat on



11rrI -1 T<. I-' I ,.
SECURITY CLASSIFICATION OF THIS PAGE (When Dot "' hen,,

-,  R

EPORT DOCUMENTATION PAGE BEFREAD INSTRUCTIONS
RBEFORE COMPLETING FORM

AW NC 2. GOVT ACCESSION NO. 3. REC IPIEN CATALOG NUMBER

.5, JA.IL.TJ~lF JLa' Subs) _ S. TYPE OF REPORT & PERIOD COVERED

INVESTIGATION OF CEPSTRUM ANALYSIS FOR SEISMIC/ FINAL REPORT-January 1, 1980-W* - V11 P . Deqember 31. 1980
ACOUSTIC SIGNAL SENSOR RANGE DETERMINATION 6. PERFORMING ORG. REPORT NUMBER U

L- hoz i, 6. CONT.*.A"T OR GRANT NUMBER(a)

Frank M /Ingels and Ghassem Koleyni

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNJ-XNUMBERS

Mississippi State University / 2304/D9 /
Drawer EE )UD

Mississippi State. mS 39762 611 '02
II. CONTROLLING OFFICE NAME AND ADDRESS 'T7-? RWORT-'YI-- .

Air Force Office of Scientific Roe ;a-ich/NM /7 Janiwy -19
Bolling AFB D3 2033; '.i ',. . ,

AGENCY NAM5 & ADDRESS(If different from Controlling Oflce) 15. SECURITY CLASS. (ot~-QA-Vor)-,-. / /
Unclassified -'-

/ L ,,IS.. DECLASSIFICATION, DOWNGRADING
". - "."SCHEDULE

I. ..&&R ,. rTION STATEMENT (of thi Report)

Approved for publ -rr-nan; distribuLion unlimited./__•," / v ~ / I' -.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, If different Ifom Report)

IS. SUPPLEMENTARY NOTES The views and conclusions contained in this document are
t hose of the aut hors and sho, M no t be int e rp ret I( 115 i1)1 es sair i I v rp resent i nQ
the official policies or endorsemnts, either expressed or implied, of the
Air Force Office of Scientific Reseircll or the U.S. Covernnlent.

19 KEY WORDS (Continue on reverse aide If necessary and Identify by block number)

Cepstrum, Echo Analysis

ABSTRACT (Coltlnue on reverse ide If necessary end Identify by block number)

'Cepstrum analysis is performed for damped sinusoid wit-) arbitrirv srarting
tiTnes within a discrete time window. Computer simulations are presented to
verify the mathematical analysis.

DD , 1413 EDITION OF I NOV 65 IS OBSOLETE
S-N 0102-1t4-66 U60L_' :1 '1 .''

SECURITY CLASSIFICATION OF THIS PAGE ("'lOn Det Entered)

!Lot2



INVESTIGATION OF CEPSTRUM ANALYSIS

FOR

SEISMIC/ACOUSTIC SIGNAL SENSOR RANGE DETERMINATION

FINAL REPORT

Covering the Period

January 1, 1980 - December 31, 1980

Submitted

by

FRANK M. INGELS
GUIASSEM KOLEYNI

Mississippi State University
Electrical Engineering

mississippi State, MS 39762

Prepared for

AFOSR
tinder ' - - "-,

Grant No. AJOSR-8o-oo86 -A

lanuary, 1981
AIR FO, 'L OFFICE OF S3CUNTIFIC RESEARCH (AFSC)
N01'ICL OF TRA.:ISMITTUL TO D!C
This techailcal rcijr't h:,; ouen reviewed and Is
approved f r publ, r, Icaiu lAW AFR 190-12 (7b).

Distribution i; uol17ited.
A. to. BL*,SE
Urhijlcal lnf:ra~ticn Officer



SECUR1Y CLASSIFICATION~ OF THIS PAGE (Wh7en Dci. Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

Rly R R 81 -0 032. GOVT ACCESSION No 3.REIEN' LGUMR

4. '?ITLE (and Subtitle) $. TYPE OF REPORT & PERIOD COVERED

INVESTIGATION OF CEPSTRUN ANALYSIS FOR SEISMIC/ FINAL REPORT-January 1, 1980
December 31. 1980

ACOUSTIC SIGNAL SENSOR RANGCE DETERM4INATION 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S1. CONTRACT OR GRANT NUMUER(e)

Frank M. Ingels and Chassem Koleyni 4od-- c?.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRO GR ELEMENT. PROJECT, TASK
AREA~ WORK UNIT NUMBERS

Mississippi State University 2Q'D
Drawer EE
Mississippi State- MS 39762 _____________

I. CONTROLLING OFFICE NAME AND ADDRESS 12/'REPORT DATE

Directorate of Mathematical and Information Science; / January 1981
Dr. Joseph Brain, AFSC 13. NUMBER OF PAGES

Bolling Air Force Base, DC 20332 Z 9,1,f
74. -MONiTORING AGENCY NAME & ADDRESS(If different from Contirolling Offie') 15. SECURITY CLASS. (of this report)

/Unclassified
11ISa. DECL ASSI FI CATION/ DOWNGRADING

SCHEDULE

Apptoved for'public releae;
Dliibudon Unlimited

17. DISTRIBUTION STATEMENT (of the abstract enterelfin Block 20, It different fromt Report)

IS. SUPPLEMENTARY NOTES The view$ and conclusions contained in thi document are

those of the auithors and sh 'oilr not be interpreted as necessarily representing
the official policies or e dorsements, either expressed or implied, of the
Air Force Office of Scie/nific Research or the U.S. Government.

19. KEY WORDS (Continue on revee /Ido it neceesary and identify by block number)

Cepstrum, Echo An'y si s

20. ABSTRACT (Continue o reversoeside If necessary end Identify by block number)

Cepstrum anal sis is performed for damped sinusoids with arbitrary starting
times withi/na discrete time window. Computer simulations ire presented to
verify the, athematical analysis.

DO I N7 1473 EDTO 0 1NOI6 S OBSOLETE Lti'/)S *.I

SECURITY CLASSIFICATION OF THIS PAGE (When Date Etntered)



TABLE OF CONTENTS

Chapter Page

LIST OF FIGURES......... .. .ii

LIST OF TABLES ............ iv

INTRODUCTION .. . i......... .1

II. THE CEPSTRUM ......... . ...... 4

III. THE SHORT TIME AVERAGE CEPSTRUM ...... 14

IV. EXPERIMENTAL RESULTS .......... 27

V. CONCLUSIONS AND RECOMMENDATIONS ...... 66

APPENDICES ............. 72

APPENDIX A. Definition of the Terms Used
in the Report ....... 73

APPENDIX B. Cepstrum Derivation for Multiple
Echoes ......... 76

APPENDIX C. Cepstrum Derivation for Cosine Type
Signals ......... 80

APPENDIX D. Cepstrum Derivation for Cosine Type
Waveforms When There is a Window

Within a Window ...... 90

APPENDIX E. Cepstrum Derivation for Damped
Exponential Type Signals . . . 96

APPENDIX F. A Listing of Computer Programs 105

APPENDIX G. Figures ......... 133

APPENDIX H. Bibliography ....... 190

1. Literature Survey . . . . 191

2. A Compiled Bibliography on the
Cepstrum and Related Topics 203

ej1



ii

LIST OF FIGURES

Figure Title Page

2-1 Block diagram of cepstrum analysis ..... .... 6

3-1 Cosine signal time plot .... ... .... 16

3-2 Cosine cepstrum with simple echo . . ..... 18

3-3 Cosine signal shifted time frame plot . ..... 19

3-4 Cosine cepstrum, shifted time frame plot . .... 20

3-5 Damped exponential with echo time plot ..... 21

3-6 Damped exponential with echo cepstrum ..... 22

3-7 Damped cosine with echo time plot. ...... 25

3-8 Damped cosine with echo cepstrum ....... 26

4-la Single echo cosine cepstrum. ......... 41

4-lb Single echo damped exponential cepstrum ..... 42

4-1c Single echo damped cosine cepstrum ....... 43

4-2a Single echo cosine cepstrum ......... 44

4-2b Single echo damped exponential cepstrum ..... 45

4-2c Single echo damped cosine cepstrum ....... 46

4-3a Two echo cosine cepstrum ......... 47

4-3b Two echo damped exponential cepstrum ...... 48

4-3c Two echo damped cosine cepstrum ........ 49

4-4a Three echo cosine cepstrum ......... 50

4-4b Three echo exponential cepstrtm ........ 51

4 -4c Three echo damped cosine cepstrum ....... 52

4-5a Noise plus signal time plots ......... 62



LIST OF FIGURES (CONTINUED)

Figure Title Page

4-5b Noise plus signal cosine cepstrum.........63

4-6a Noise plus signal time plots..........64

4-6b Noise plus signal cosine cepstrum.........65



iv

LIST OF TABLES

Table Title Page

4-la Effects of windowing/smoothing . ........ 29

4-lb Effects of windowing/smoothing . ........ 30

4-2 Effects of windowing/smoothing ......... 30

4-3a Power cepstrum magnitude variation ....... 31

4-3b Normalized form of Table 4-3a ......... 32

4-4a Power cepstrum magnitude variation ....... 33

4-4b Normalized form of table 4-4a ......... 34

4-5a Power cepstrum for damped exponential
with windowing/smoothing ........... 36

4-5b Power cepstrum for damped exponential
time differences ............. 36

4-5c Power cepstrum for damped exponential
time differences ............. 37

4-6a Power cepstrum for damped cosine waveform ..... 38

4-6b Power cepstrum for damped cosine waveform 39

4-6c Power cepstrum for damped cosine waveform ..... 39

4-7a Power cepstrum variation for one echo ...... 53

4-7b Power cepstrum variation for one echo (normalized) 54

4-8a Power cepstrum variation for two echos, cosine 55

4-8b Power cepstrum variation for two echos, cosine 56

4-9a Power cepstrum variation for two echos, damped
exponential ............... 57

4-9b Power cepstrum variation for two echos, damped
exponential ............... 58

4-10a Power cepstrum variation for two echos, damped cosine 59

4-10b Power cepstrum variation for two echos, damped cosine 60



V

LIST OF TABLES (Continued)

Table Page

5-1 Single Echo..... ............... ............ .........69

5-2 Multiple Echoes....... ............ ............ ......70

5-3 Noise Case..... ............... ............ .........71



CHAPTER I

INTRODUCTION

In seismology or in many other situations signals or waveforms

are encountered that may be represented as the convolution of a

few components. The signal might be distorted by transmission

through a linear system. For example, the effect of multipath

and reverberation may be modeled in terms of a signal that is

passed through a linear system whose impulse response is an

impulse train. One may wish to recover the undistorted signal,

or in the case of receiving convolved signals one might want to

determine these components so as to characterize the waveform or

physical process from which it originated.

The process of separating components of a convolution is

termed deconvolution. In this process one must determine an

appropriate transformation of the waveform into the desired com-

ponert waveforms, [3], 116]

In seismology arrivals of various waves or phases can be

considered as the delayed arrival of more or less distorted echoes.

The existence and timing of these echoes are not sufficiently

apparent on the original seismograp~h traces for analysis. The

main interest in this research is location and identification of

target signal. sources, or determining range from a target signal

source to a sensor.

* Reference numhers refer to those entries in Appendix H, section

2, page
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Identification is accomplished mainly by using feature analysis

usually in the frequency domain; location consists of two aspects,

one is determination of the angle to the target, the other is

range to the target. At the present time ranging is accomplished

through use of doppler techniques or by using multiple sensors and

performing cross correlation to determine the difference in time

of arrival of components of the signals which travel at different

velocities [12]. In this research it is desired to use only one

sensor to detect both seismic and acoustic waveforms generated by

the target signal source and to determine the range by acquiring

the difference between arrival times of the two signals through

use of the deconvolution technique - the cepstrum.

One deconvolution technique is based on the wiener theory

of linear filtering. This technique has been extensively applied

in processing seismic waveforms in detection of echoes.

Cepstrum analysis , which is a subclass of the homomorphic

deconvolution techniques, is a method that can effectively separate

the signals or determine the difference in time arrival of two

signals. Tn this research an investigation is conducted using the

cepstrum analysis technique for data sources which are not

strictly coherent and periodic. The study has been divided into

five parts:

1. The cepstrum is first defined and calculated in genera].

2. The cepstrum is then calculated for noiseless cosine

waveforms.

* For definition of terms see appendix A.



3

3. The cepstrum is then calculated for noiseless damped cosine

waveforms.

4. The cepstrum is then calculated for noiseless exponential

waveforms.

5. Finally, the cepstrum is calculated for noisy cosine

waveforms.

Cosine waveforms for the noisy case are chosen because of

several small spikes that usually exist in the cepstrum plot of

these type signals, making them more prone to discrimination from

the noise.

The period of observation is .5 seconds and the delay or

epoch times are .01, .05, .07, and .12 seconds for the single echo

case and .07, .09, and .15 seconds for double echo case. The

sampling rate is 1/2048 seconds and there are 1024 samples in each

observation interval.

The emphasis is on a single echo case since for more than one

echo the study becomes very complicated and calculations if not

impossible are very cumbersome. Furthermore the computer run time

becomes prohibitive for multiple echoes.

The effect of the amplitude and epoch time of a single echo

is observed and in the noisy case the study is done for several

signal to noise ratios (SNR). In calculating the cepstrum for

different cases the lengthy calculations are left for the appendix

and the results are presented in the main text for the convenience

of the reader.



CHAPTER II

THE CEPSTRUM

Definition of the Problem

In a listening post within listening range of a target,

it is possible to have one single source with multipath propagation

or multiple targets or multiple targets and multi-path. In either

case, the received signal is a composite of the individual signals

or of the multipath signals. One receives the signal in a majority

of cases in a form which is the convolution of those generated

signals. The task may be to decompose the signal into the original

signals. This process of decomposing the convolved signal into the

original is called deconvolution.

A deconvolution as commonly performed by means of inverse

filtering or optimum zero-lag Weiner filtering suffers from the

limitation that either the shape of the waveform to be removed

must be known or the assumption that the wavelet is minimum-phase

must be made [321.

In the field a problem of prime interest is one of

determining only the range from a target to the sensor. Typically,

this is accomplished by using two co-located sensors and performing

an analysis such as cross correlation to determine the difference

in arrival times between two signals of different propagation times

such as acoustic/seismic, EM/acoustic, etc. [73]. These techniques

require two sensors and, for various reasons, it is desirable to

devise some technique that utilizes only one sensor. The problems
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are numerous in that all signals and echoes have similar properties

and a technique which may answer one problem might not be of any

help in the other situation.

History

In 1959 when Bogert noticed banding in the spectrograms

of seismic signals, he realized that this banding was caused by

periodic ripples in the spectra and this was characteristic of

the spectra of any signal consisting of itself plus an echo. The

frequency of these ripples equals the reciprocal of the difference

in time arrivals of the two waves. Tukey suggested that this

frequency difference might be obtained by first taking the logarithm

of the spectrum, thereby making the ripples nearly cosinusoidal.

In 1960, Bogert programmed Tukey's suggestion on a computer (see

Figure 2-1) and proceeded to analyze numerous earthquakes and

explosions. Tukey, noticing similarities between time series and

log-spectrum series analysis, introduced a new set of paraphrased

terms. The spectrum of the log spectrum was called "cepstrum" [i1.

The first paper on cepstrum was published in 1963 by

Bogert, Tukey and Healy [3]. In this paper the main study concerned

seismic waves, but later on, the idea of cepstrum analysis was

used in speech signal analysis by A.M. Noll [4], in visual evoked

response (VER) by R. C. Kemerait [31], in oceanography by J. C.

Hassab [41], and even in analysis of full-term and premature

infant's cries [46].
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Analytical Discussion

So far we are familiar with the word "cepstrum" but not

with the mathematical means to obtain it. As was mentioned earlier

when there is a composite signal one might be interested in

decomposing the signal and obtaining the original signals or

simply be interested in epoch or delay times. These two different

ideas would lead us in pursuing two different methods each suitable

to our desires. After introduction of the word cepstrum by

Bogert et al, R. W. Schafer [16] introduced another name obtained

from a former one called complex cepstrum. After this new invention

the previous word cepstrum, which was solely used to show the method

of detecting the echo delay time, was called power cepstrum.

Complex Cepstrum

The complex cepstrum technique was first described in a

doctoral dissertation by R. W. Schafer [16] in November 1968. As

previously mentioned the cepstrum is related to homomorphic decon-

volution. The basic difference is that a Fourier transform

(magnitude and phase) is employed, rather than the power or energy

spectrum. This is done because of the concern over recovery of the

actual signals rather than simply the different time of arrivals.

Power Cepstrum

As mentioned before in contrast to the complex cepstrum

one is not concerned with the recovery of the actual signals by

decomposing them, one is interested in detecting the echoes, and

it is because of this difference that there are two different
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cepstrum techniques. From this point on only the power cepstrum

will be utilized.

Single Echo

In the simplest echo, values of time series y(t) are

multiplied by a constant a , delayed by a time difference T and

added to the original series to give a new series

z(t) = y(t) + cy(t-T) (2-1)

taking the Fourier transform from both sides of (2-1) one has

Ffz(t)] = F[y(t) + zy(t-i)]

= F[y(t)] +czF[y(t-T)] (2-2)

considering the time shifting property of the Fourier transform one

has

if g(t) G(w)

then g(t-r) GM-+ C() eJT (2-3)

and then calling the Fourier transform of z(t) and y(t), Z(W) and

Y(w) respectively one has

Z(W) Y(W)(I + -t e j 
W ) (2-4)

squaring the absolute values of both sides in (2-4) would give

IZ(.)12 = IY(w) 2 11 + xe- jw 12 (2-5)

taking the logarithm of both sides in (2-5) would result



2 log IZ()I = 2 log IY(M)I + log l+ae -jWT 2 (2-6)

Parameter a is the strength of the echo signal with respect to

the original signal and it is usually less than one. If the

series expansion of loge (I+X) is examined we observe

2 3 4 n+l
log (l+X) - + - + = n Xn - l<X<l (2-7)

e~lX X 2 3 4n
n=l

The relation between logarithms in two different bases is

logc A

log A = logc A (2-8)
b logA b

In our case b =10 and c =e(natural log)

loge A
logl0A- logA= .434295 log e A (2-9)

Let us define the notation

log X = log 0X and In X = log e X (2-10)

then one can write

log 1 + a eJ I = .434295 (-l)n--'n ( (2-11)
n=l

ae-tI< 1

the complete term is then

2 log I7(w)= 2 log IY(w)I + .868590 n x1 )n n - (2-12)

n=1



11

101

Taking the Fourier transform again from both sides of

(2-12) one has

Cepstrum = C (z(t)) = F[2log jz(w)H = F[2log )Y(w)l]
P

n nF[.868590 Y (-1)n a e e] dw (2-13)

n=l n

or

(z(t)) 
= F[2 log JY(w) I]

+ .868590 n _ (-)
n n e - j n W T e - YAI dw 2-4

notice that here w is the variable of a function whose Fourier

transform is desired. Interchanging I with f gives

C (z WO) ~F[2 log IY(w) I

n+l

+ 1.868590 _ cn 6(t-n-0j (2-15)

n=1

from (2-15) disregarding shape of the original signal y(t) , one

observes a set of ripples. It is clear that the "frequency" of the

ripple is just T , whose units are ripples per cycle per second or

(necessarily) seconds [3].

The log power spectrum can be considered as a "frequency

series", if estimated digitally, it will in fact be a discrete fre-

quency series. In such a series Bogert et al [3], describe a

(nearly) cossinusoidal ripple by its quefrency, its gamnitude, and

its saphe at some (frequency) origin.



When approximating the function ln(l+X) the condition

was stipulated that

I e J 1 (2-16)

if a> 1 , one can performe some mathematical manipulations as:

1+ a e- 1  12 = 1+C2 + 2cacoswT 1
= 2(1+ 1/2 + 2/ cos wT) (2-17)

and w is less than one and because In(AB) = in (A) + in (B), one

can filter out the term lna 2 and still have the ripples T seconds

apart.

As may be observed the cepstrum is a function of frequency

and is determined over a range extending from zero up to a maximum

frequency that is necessarily !qual to the longest lag in the

autocovariance used in the original power-spectrum calculations.

The cepstrum is effective in detecting simple echoes even when

autocovariance fails completely [3].

In speech analysis the cepstrum of a speech signal has

a peak corresponding to the fundamental period for voiced speech

but no peak for unvoiced speech [4]. Cepstral pitch detection has

the important advantages that it is insensitive to phase distortion,

and is also resistant to additive noise and amplitude distortion

of the speech signal. The cepstrum, when calculated for a series

of short time segments of a speech signal, has been shown to perform

very efficiently as a pitch determinator particularly for vocoder

applications [18].
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In radar applications with low look angles, and similarly

in sonar, measurement of echo delay helps reduce interference due

to reflection by a neighboring boundary. In the processing of

bioelectronic data, such as electroencephalograms and visually

evoked responses, the cepstrum helps identify the origin of

observed electrical activity [26], [59].

The non linear terms ignored in power series expansion

of In(l+X) deserve some attention. The first time that we took

the Fourier transform in (2-4) we had a term (l+ae-JWT). The

absolute value of this term when squared is

l+2acosWT + t (2-18)

and the natural logarithm of it is

in( + 2a cos W + a2) (2 Ot COS WT + 
2 ) - 2 (2 UCOS WT + a2 ''"

2 21 2
= + 2 cc coswT-2 2 cos2 WT (2-19)

Using trig identities one has

2 2 2 1 2

2a COS u)i = 2 (2 (- + 2cos 2os

= (x2(I + cos2wr) (2-20)

substituting (2-20) in (2-19) gives

In(1+2+ tcosu +o ) = 2 + , cos r -,2 -,N cos 2
LT

2
2 t cos uwT- 1 cos 2WT (2-21)

b.,.. ..... L . ,......."-,."
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2
The second rahmonic represented by the term a cos 2 WT contributes

an amount to the variance of the ripple [3]. This is to be compared

with the contribution of the fundamental. The ratio is /4 so

that rahmonics, although to be expected, should be rather small.

Another source of complexity, would be provided by multiple

echoes, such as the case of two echoes with parameters al, T1  and

U2 , T2 * These would multiply the original Fourier transform by

1 + z 1 e- l + a2 e-i (2-22)

and the power spectrum by

1+2a COS T+2 aCOS WT 2 +2a U COS W(T-T2 2 + a (2-23)1 b) 1 +22 1 2 os~~ 2) +al 2

so that the amount added to the log spectrum is

2 2
2 a Icos T+2a 2 cosW 2  2 - a 2S 2 c Ws

2u2

-2ala COS W(T+ T2) (2-24)
1 2 1 2

to quadrature accuracy. Thus in addition to ripples at T and 2

one expects a ripple at frequency (l + 2) with gaminitude of

order twice that of the rahmonic at quefrencies 2T 1 and 2T2

In (2-24) if higher order approximation is used, the difference

ripple would show up. Appendix B shows complete work for multiple

echo case.



CHAPTER III

THE SHORT TIME AVERAGE CEPSTRUM

The terminology 'short time average cepstrum' might be

confusing or in some cases misleading, but if the reader bears with

us for a short time the ambiguities will be clarified. In the

previous chapter the cepstrumwas discussed in general, and the

period of integration for the Fourier transform was from -- to .
tl

Most of the realizable experiments are causal, that is, they cannot

exist for the time period -- to 0. The use of the digital computer

for analysis adds another restriction, limiting the length of the

experiment even if it is performed in real time.

In most applications one is interested in observing an

event in a limited time, or in the other words, observing the event

through a window. If the cepstrum is to be evaluated for a composite

signal in the aforementioned circumstances; the limits of integration

must be changed, and it is because of these limitations that the

result is called the short time averaged cepstrum.

To derive some analytical expressions for short time

average cepstrums we choose some functions of interest and find

their cepstrum. As mentioned in the introduction three types of

signals have been chosen:

1. cosine signal

2. damped cosine signal

3. damped exponential signal.

The cepstrum expression is derived for the cosine and the damped
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exponential signals only when we have single echoes. The case of

damped cosine is a special form of 1. or 3. depending on the

damping coefficient.

Cosine Signal

The choice of signal has been

g(t) = cosw (t - T ) U (t - T2 ) + COS W ( t- T 3 )u(t- T4 )

(3-1)

which is shown in Figure 3-1. As one observes from the figure the

signals are not in phase and they begin at two different times.

The complete calculation is left for Appendix C, but some of the

results are mentioned here.

Taking the Fourier transform from both sides of (3-1)

gives

F[g(t)] = F[cosw (t-T 1 ) u (t - T 2 ) + Cos Wo(t -T 3 )u(t-T 4 )]

T T
-jw~t . W -ucosw0 (t-T I ) e dt + C o (t -T)e dt

T2 T4 3

(3-2)

taking logarithm of the spectrum found from this Fourier transforma-

tion and after some mathematical manipulations one encounters terms

with the following forms

cosW (T - T 2 ) and cosw (T- T4).

Terms containing cosine, would have impulses in their Fourier

transforms, so in our case presence of ripples at T - T 2 and T - 14

is obvious. Because of the symmetrical property of the Fourier

transform one should also obtain ripples at 12 and 4 and
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Figure 3-1. it) Cosine waveform, h) the echo signal,
c) composite signal
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at T - T2 and T - 4 * In Figure 3-2 we show such ripples and

also existing ripples of the harmonics of T 2 and 4

Throughout the calculation the window or time frame was

from t = 0. through t = T seconds, and the peaks are at T2 and

T4  Now if the time frame is T2 - Ti seconds where T < T2 < TI

and T4 < T2 < T as shown in Figure 3-3, we show by analysis in

Appendix D and observe in Figure 3-4 that the only peak is at

T = T2 - TI or its multiples.

Damped Exponential Signal

For the damped exponential case the following function is

used.

g(t) = (t -T )e-C(t - l)u(t - T) + L(t -T )e-C(t -T2)u (t -T 2 ) (3-3)

which is shown in Figure 3-5. Taking Fourier transform of both

sides of (3-3) gives

T

T C ~(t-T) ejt+ f - ~ -e jC
F[g(t)] = f (t-T e eT (t -T 2 ) e- c(t-2)e-tdt

T1

(3-4)

when, after some mathematical manipulations, the Fourier transform

*Keys for the figures are

WNDW = I windowing is preformed

I WNDW = 0 no windowing is performed

' WNDF = 1 smoothing is performed

T VTNDF = 0 no smoothing is performed

------... . = Total number of sample points in the

origi !al composite signal
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-1.60

1.60
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-1.60 lI~ II lq

(c)

0. CIO 3. 10 1.4C . ;C I. ,;. 50
TIME SECONDS

F. 0-12V Fl If-I 1ILII I I' l T-I R:, +.. - CE IL 7 LI T - 1, A

Figure 3-3. a) cosine waveform, b) the echo signal.

c) the composite signal looked through
T 2-1 1  see window

211
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0.00

T= .07 sec
. (a)

0.02

0.00..{

(c)

,I. I I I I
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TIME SECONDS
(T-TRl1 I xr u- (- r -THLUlI I u rr -rRvlr U . 6 (r-I U I 0' u-S0 r- rR'ic I V T -T HUI2

Figure 3-5. a) A damped exponential waveform,
b) its echo, c) the composite signal
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has been calculated and the magnitude of the power spectrum is

found one encounters terms such as

Acosw (T-- I) , Bsinw(T-T) , Ccosu (T-T 2),

Dsinw (T- -2) , Ecosw( r2 - T1),and FsinW(T2 - 1)

Taking again the Fourier transform of the log spectrum of (3-4),

one has to take Fourier transform of a few terms containing cosine

and sinewaveforms of T1,T 2 and T 2 T1 ,which would result peaks

at Tl1 T 2 and Tl - T " But as is shown in Appendix E, the

magnitude of the ripples at TI and T2 is very small and in the

cepstrum plot of Figure 3-6 it is shown that it is not recognizable

(it is safe to say that with the choice of c and a one might have

different degree of distinguishability at T1 and T2) . In fact we

show in Appendix E for choice of c=30., T = .5, T, = .07 and

T 2  .12 seconds and a = .6 this relative ratio is of the order

-3
10

Damped Cosine Signal

In the damped cosine case the equation to be used is

g(t) = (t-T cos Wo(t- T ) e-C(t 
- T I) + (t-T 2) COSW(t-r2)eC(t-T2)

(3-5)

which is shown in Figure 3-7. Analytical calculation of the cep-

strum for this case is extremely difficult, but experimental results

have shown the cepstrum behaves like the cosine or damped exponential

case, depending on values of , , , I and 12 * In the next chapter

the experimental results are di-cussed.
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In all three cases if one takes into account the higher

order terms in ln(l + X) expansion, ripples are observed at

T + T 2 and its harmonics. Appendix C shows the existence of

such ripples, at the points T2 - T and T2 + " Figures 3-7

and 3-8 show damped cosine waveform and its cepstrum respectively.
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CHAPTER IV

EXPERIMENTAL RESULTS

As previously stated the objective is to investigate the

feasibility of applying cepstral analysis to echo or epoch detec-

tion. The study is conducted for two cases of noiseless and

noisy conditions, with single or multiple echoes. The computer

study is performed using Univac 1108 computer at Mississippi State

University Computing Center.

Noiseless Case (Single Echo)

For the study of single echo, three types of signals;

cosine, damped exponential, and damped cosine waveforms were chosen.

The choice for cosine waveform is

cos(200r(t- T ))u(t - -1 ) + .6 cos (200T(t - T 2))u(t - T2 ) (4)

The above equation is comprised of two parts, the first part being

the original signal and the second part the echo. If T is not

zero one has the case of epoch detection for the original signal

and echo or eopch detection for the second signal.

The total length of the time window is .5 seconds. The

signals are sampled at 2048 samples per second and the delay times

are T = 0.0, T2 = .01, and .05 seconds. Also the cases of

= .07, 12 = .12, and r = .21 seconds are discussed. For each

case of T1 and T2 the study is conducted in four different manners:

1. with no windowing or smoothing (N4,NS)

2. with no windowing but smoothing (NIS)
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3. with windowing but not smoothing (W,NS)

4. with windowing and smoothing (W,S)

In case 1, when no windowing or smoothing is used the

signal is sampled, its Fourier transform and consequently its

power spectrum is found and then the Fourier transform of logarithm

of this power spectrum is calculated to give the new power spectrum

or the cepstrum. In case 2, the windowing is performed in the

time domain, before the first Fourier transform is calculated. The

windowing process is based on Kaiser-Bessel equations with 6 8.

In case 3, the smoothing process only is used. The smoothing

process is based on the Hanning method. The smoothing is performed

after finding the log spectrum and when ready to start the Fourier

transform operation again. In case 4, both windowing and smoothing

are done.

The results are illustrated in Appendix C showing that

neither windowing nor smoothing was of any help in detecting the

echo, or epoch delay time. Tables 4-la and 4-lb show what

effects the use of windowing and/or smoothing create. In other

parts of the study T2 was chosen to be a multiple of r I so

T 2 - T I again is one of the harmonics of T The result is

obvious, as one sees a higher peak is at 12 - I only, with no

significant difference in the value of the cepstrum at other points.

These results are shown at Table 4-2 and can be compared with the

values at Table 4-lb. The reason for this increase in value of the

cepstrum is that instead of having only the amount of cepstrum at

this point, harmonics of the cepstrum at point T add to the

original cepstrum.
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Included in the study was variation of the cepstrum as

a or T2 or both were changed. Tables 4-3a and 4-3b show variation

of cepstrum for a fixed T2 and variable a . As may be seen the

value of the cepstrum remains almost the same in the range of a =.2

to a = 1.6. Table 4-3b shows the normalized values of cepstrum in

Table 4-3a. in table 4-4a the value of the cepstrum at some impor-

tant points is presented and as may be seen, changing a changes

the value of the cepstrum (notice here T is no more zero).

These results comply with what was found in Appendix C. Table 4-4b

is the normalized form of Table 4-4a

TABLE 4-la

POWER
CEPSTRUM NW,NS NWS W,NS W,S
AT/FOR

T2 = .01 381.339 339.922 54.4870 6.3023

2
T 2 = .05 415.792 290.384 47.9950 4.9561

Effect of using windowing and/or smoothing on the power cepstrum
of cosine waveform, see Figures in Appendix C -la, 2a for time wave-
form and Figures in Appendix C-lb, 2b for cepstrum plots. shows

the location of the highest peak value as well as being the epoch or
delay time for the echo signal. TI = 0 for both cases.

* Key to the tables

NW: means no windowing is performed
W: means windowing is performed

NS: means no smoothing is performed
S: means smoothing is performed
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TABLE 4-lb

POWER
CEPSTRUM NW,NS NW,S W,NS W,S
AT/FOR

1 265.834 38.6806 6.3689 .5999

2  154.062 31.1605 5.2801 .3493

T 2 T 1 14.4831 130.409 24.409 2.61198

T 2 + T 94.4225 37.1550 5.5992 .1950

Value of the power cepstrum at the epoch times as well as at
the difference and sume of the epoch times for T1 = .07 and
T = 0.12 seconds for a cosine type waveform (see Figure G-3),
also of notice is the effect of windowing and/or smoothing.

TABLE 4-2

POWER
CEPSTRUM NV,NS NW,S W,NS W,S
AT/FOR

1 264-2950 q.6876 1.3447 .1123

'2 158-4480 18.6844 3.4655 .1072

T - 1  76.9708 27.10q8 4.1172 .2226

r1 + T 2 95.4120 41.1492 7.4753 .1962

This table is similar to Table 4-lb except 2 .21 seconds is
a multiple integer of r = .07 seconds. See Figures G-4a and
C-4b for the waveform an its cepstral plot.
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The damped exponential signal with a single echo is

(t- -i e- 30(t-Tl ) u(t-Tl) + .6 (t- T 2 ) e 2 u(t- T2 ) (4-2)

with equation (4-2) being comprised of two parts, the first part

the original signal and the second part the echo. The damping

coefficient has been chosen so as to drive the signal down in a

way which approximates some physical phenomenon which we are

modeling. As in the previous case, the study is done for four

different conditions depending on the use of windowing and/or

smoothing.

Table 4-5a shows variation of the power cepstrum and effect

of windowing and/or smoothing on the power cepstra when rI = 0

and T assumes two different values. Table 4-5b shows the power

cepstrum at four important points when I1 = .07 and 2 = .12

seconds with a = .6. Table 4-5c shows the peak value at the

same four locations as for Table 4-5b but for this table T is

an integer multiple of the T As mentioned in the case of cosine

signals windowing or smoothing would not do any good, but rather

it actually degrades the results.

Looking closely in Table 4-5b one finds it interesting

to see that the highest peak value of the power cepstrum is located

at T 2 - r I the same place as was mentioned in Chapter III . For

this Table C, the damping coefficient, is equal to 30.0. As was

previously noted the location of the highest peak va liue is verv much

related to the damping coefficient. In Appendix G it may he seen how

changing C, the damping coefficient, changes the locait ion (f the

highest peak or its value in the cepstrum plot.
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TABLE 4-5a

POWER
CEPSTRUM NW,NS NW,S W,NS W,S
AT/FOR

= .01 173.026 41.6319 5.3620 .6055

= .05 63.347 20.6159 2.3575 .2350

Effect of using windowing and/or smoothing onthe power cepstrum
of damped exponential waveform. T shows the location of the
heighest peak value as well as being the epoch or delay time for

echo signal. T 1 = 0 for both cases. For the waveforms and their
cepstral plots see Figure G-11 and G-12.

TABLE 4-5b

POWER

CEPSTRUM NW,NS NW,S W,NS W,S
AT/FOR

T .5413 3.7263 .5501 .0491

2.3317 .7425 .1281 .0098

T 2~ T 1 257.817 28. 2807 3.2023 .31751

T2+ r .2384 .4015 .0756 .0036,

Value of the power cepstrum at the epoch times as wel] as at
the difference and sum of the epoch times for i .07 and
T2 = 0.12 seconds for a damned exponential waveform, als of
notice is the effect of windowing and/or smoothing. SeL(e
Pvir (sC-13a, 13b,c,d,e, for the wnveform nod its tepstrol

plot.
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TABLE 4-5c

POWER

CEPSTRUM NW,NS NW,S W,NS W,S
AT/FOR

T 10.2740 3.6232 .6234 .0565

T2 42.4780 1.5976 .2140 .0086

T- t 294.2910 19.5166 2.3079 .1241

T + T 83.9251 2.5583 .3056 .0106
2 1

This table is similar to Table 4-5b except T = .21 seconds
is a multiple integer of Ti = .07 seconds for t~e waveforms.
See Figures G-14a, 14b.

The following waveform is chosen for the study of damped

cosine signals (4-3) being comprised of two parts, the original

e-2(t - T) cos(200 r(t- 1 )) + .6 e2(tT 2 ) cos (200(t-r 2)) U (t- 2)

(4-3)

signal and the echo signal. Looking closely at (4-3) we will find

it to be a combined form of (4-1) and (4-2), with a different damping

coefficient. As was mentioned in Chapter TIT, the damping coeffi-

cient plays an important role in shaping the cepstrum and the

damping coefficient has been chosen after careful studY of the

cepstrum plots. The study is done for four different cases dopend-

ing on whether we have used windowing and/or smoothing.

Table 4-6a shows variation of the power cepstrum ;ind

effect of windowing and/or smoothing on the power ucpstra when
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TI = 0 and T2 assumes two different values. Table 4-6b shows

the power cepstrum at four important points when T = .07 and

T2 = .12 seconds with a = .6 . Table 4-6c shows the peak value

at the same four locations as for Table 4-6b but for this table

2 is an integer multiple of T As was mentioned for the two

previous cases, windowing or smoothing would not do any good, but

rather it actually degrades the results.

Looking closely at table 4-6b we notice that the behavior

of this case is like the behavior of two previous cases combined

together meaning that we have noticeable peaks at TV, T2 and r2 - T1 ,

For this Table c, the damping coefficient is equal to 2 and the

frequency of cosine signal is 100 Hz same as for cosine type case.

As we said earlier location and the height (strength) of the

highest peak very much is dependent on the damping coefficient.

In Appendix G we will see how changing c, the damping coefficient,

has changed the shape of the cepstrum plot.

TABLE 4-6a

POWER I

CEPSTRUM NW,NS NW,S W,NS W,S
AT/FOR

r = .01 326.876 177.362 1 28.%62 1. ito I

2

2 .05 292.795 11q6.807 17 1 .,F

Effect of using windowing and/or smoothilog om het i w,,r ,w~t rItr

of damped cosine waveform. r shows tile locat ion o, tit- id st

peak value as well as being te epoch or del;iy iw Ior thof ,inal.
T 1 = 0 for all two cases. For tb,, wnvform; mid flcir ,tVtra

plots, see Figures C-6 and G-7.

• - + g .... .. . ?i
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TABLE 4-6b

POWER
CEPSTRUM NW,NS NW, S W,NS W,S
AT/FOR

1  236.7580 120.3460 20.7965 1.9372

T2 50.9903 4.4276 1.4184 0.1101

T2- T 207.6670 108.0450 18.2647 1.8819

T 2 + T 41.0980 17.9547 1.9821 .0645

Value of the power cepstrum at the epoch times as well as at
the difference and sum of the epoch times for T = .07 and
T = 0.12 seconds for a damped cosine waveform, also of notice
is the effect of windowing and/or smoothing. See Figure G-8
for the waveform and its cepstral plot.

TABLE 4-6c

POWER
CEPSTRUM NW,NS NW,S W,NS W,S
AT/FOR

T 246.4780 181.1640 31.6476 2.9500

T2  71.8209 21.5712 6.5571 .2030

T2- r1 181.6310 74.9125 12.1095 .6719

T + T 1 54.0482 10.1252 .9468 .0229

This table is similar to Table 4-6b except i = .21
seconds is a multiple integer of 1 = .07 secons. See
Figure G-9 for the waveform and its cepstral plot.
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Multiple Echoes

Because of complexity in the case of multiple echoes we

restricted our study for two and three echo cases. As we can see

from Figures 4-1 through 4-4, when the number of echoes increases,

it becomes very difficult to detect the delay time of these echoes.

In study of multiple echoes for the cosine waveforms we tried to

change the time between two echoes and see the effect on the power

cepstrum. As we see in Table 4-7a, if a is fixed there is no

change in the magnitude of the power cepstrum, at the two epoch

times, but the value of the cepstrum changes at the sum and the

difference of the epoch times. This will further show the

dependence of the power cepstrum on epoch times as well as other

parameters. Table 4-7b shows the normalized values of Table 4-7a.

For more plots of multiple echo case see Appendix G.

Table 4-8, 4-9 and 4-10 show the magnitude of the cepstrum

at some important points for two echo cases also reflects the effect

of windowing and smooting, notice we have peaks at the time

difference as well as sum of delay times. This is exactly what

we expect from a cepstrum plot.
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TABLE 4-8a

CEPSTRUM
AT/FOR NW,NS NW,S W,NS WS

' 228.4860 103.2690 17.2839 1.6130

T 2  131.9120 44.8394 7.0003 .4590

68.2902 15.5707 1.4308 .0430

T 2 1- '1 14.5433 113.188 20.6583 2.1491

T 3- 'i 131.9120 44.8394 7.0003 .4590

T - '2 228.4860 103.2690 17.2839 1.6130

T + T2 68.2902 15.5707 1.4308 .0430

T + T 25.2834 1.0093 .5299 .0480

T2 + T 3  68.2902 15.5707 1.4308 .0430

+i + 2 + 
T 131.120 44.8394 7.0003 .450

Cepstrum values at epoch times, sum and the difference of epoch
times for a signal comprised of three cosine waveforms. The epoch
times are TI = .07, ' =  .12 and .3  = .19 seconds. Notice the
difference between two epoch times is another one. Also notice
the effect of windowing and/or smoothing.
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TABLE 4-8b

CEPSTRUM
AT/FOR NW,NS NWS W,NS W,S

Ti 226,6940 103.8470 17.3460 1.6187

T2 133.3340 51.9006 9.3475 0.7776

T3 50.0748 .2271 0.5901 .0037
3

- T 25.6765 150.0360 27.1378 3.1250
2 1 II

T 1, 12.5899 80.4513 15.2132 1.3470

T3 -T2 16.1891 24.9517 4.1131 .4036

I + 2 68.9133 40.4236 6.5466 .3025

lI + 13 23.5328 2.6927 .2699 .0112

T2 + 13 11.2428 7.2127 1.6272 .0396

I1+T2+ 13 12.8564 11.8401 2.4185 .0857

This table is the same as Tahle 4-8a except the epoch t ims are

1 07, 12 = .09 and 13 .15 seconds, difference of two of

them is not equal to the other one. See Figure G-5.
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TABLE 4-9a

CEPSTRUM NWNS NWS WNS WS

AT/FOR

Ti 25.9059 4.8733 .6452 .0566

T2 110.4580 7.4845 .8232 .0527

T3 13.4191 .4786 .0504 .0058

T 1 223.8570 25.5724 2.9127 .2899

- 110.4580 7.4845 .8232 .0527
T3

T3 - 2 223.8570 25.5724 2.9127 .2899

T + T2 13.4191 .4786 .0504 .0058

T + T 12.7848 .5522 .0707 .0057

7 + r 13.4191 .4786 .0504 .0058
2 3

1+I 2+ r 2.2451 .3971 .0614 .0080

Cepstrum values at epnch times, sum and difference of epoch times

for a signal comprised of three damped exponential waveforms. The

epoch times are Ti = .07, r9 = .12 and .19 sec'onds. Notice

the difference between two epoch times is another one. Also notice

the effect of windowing and/or smoothing.



58

TABLE 4-9b

CEPSTRLM
AT/FOR NW,NW NW,S W,NS W,S

T 5.4707 5.0114 .7707 .0698

1

1.2989 2.5488 .4121 .0332
2

.4639 .8940 .1636 .0083
-3

T - T 295.226 43.1720 5.1853 .5729
2 1

T 3 - T1  35.2401 4.3895 .6427 .0546

T3 - T2 39.8588 .8640 .3122 .0307

T1 + T3  3.8335 .7185 .1402 .0069

Tl 
+ T3 16.2440 .0853 .0133 .0030

2 + T3 9.1920 I .6145 .0996 .0049

T 1 +r 2+ 3 .3356 .2326 .0420 .0028

This table is the same as Table 4-qa except the epoch times are

rI = .07, 2 = .09 and i3 15 seconds, difference of two of

them is not equal to the othlr one. See Figure G-5b.
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TABLE 4-10a

CEPSTRUM
AT/FOR NW,S W,NS W,S

T1  254.6810 110.0010 17.6356 1.6235

T2 74.0872 4.3336 .2014 .0122

T 52.2991 35.3602 6.5878 .2367

12 - Tl 171.7540 54.6719 9.5635 .9905

T - T 74.0872 4.3336 .2014 .0122
3 1

'3 - T2 171.7540 57.6719 9,5635 .9905

I + T 52.2991 35.3602 16.5878 .2367
1 2

T + T 3 52.2991 35.3602 6.5878 .2367

T 2 + T3 52.2991 35,3602 6.5878 .2367

rL 1 12+1 3 23.5596 1,3349 .0397 .0030

Cepstrum values at epoch times, sum and the difference of epoch
times for a signal comprised of three damped cosine waveforms. The
epoch times are TI 

= .07, 12 = .12 and 1 = .19 seconds. Notice

the difference between two epoch times is another one. Also notice
the effect of windowing and/or smoothing.
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TABLE 4-10b

CEPSTRUM
AT/FOR NW,NS NW,S W,NS W,S

T 237.3590 125.9470 24.3554 2.3035

T2 77. 9314 10.2232 2.9567 .2470

T 36.1534 2.9230 .2263 .0184

3T

T- T1 178.248 42.2664 5.5692 .6033

T 3- T1  65.9162 1.4719 .1869 .0262

T3- r2 30.5698 30.1385 6.9430 .7109

1 + T 49.8258 26.8940 4.0052 .1856

T + 'T 28.4976 14.2389 14.2389 2.92791 3 1

2 + ' 3 21.7595 1.9567 .8000 .0258

-j--
T 2 + 3 25.7880 5. 808.1 1.2q62 .0509

This table is the same as Table 4-10a except the epoch times are
T1 = .07, T2 = . 0 and 3  15 seconds, difference of two of

them is not equal to the other one. See Figlure C-lOb.



61

Noisy Case

The study included the cosine type signals for the

noisy case. The reason for using the cosine waves was that in the

cepstrum plot of a cosine waveform there are many ripples besides

the original ones, and this makes a good choice for a noisy case.

Different signals to noise ratios were chosen from 2.43 up to 15.43

db and it was found that the cepstrum plot is not of any help up to

15 db. It is for signal to noise ratios above this level that the

epoch or delay times in the cepstrum plots are distinguishable.

Figures 4-5 and 4-6 show the cepstrum plot for signal to

noise ratios of 2.43 and 15.44 db. As in all of the previous cases

there is no discernable improvement in the cepstrum plots by

using windowing and/or smoothing.

I'



02

No I~ s

I I

4 r r I

13 lo U.I rl 1 r



63

UD

4Jc'

_77:v

a~ jf) C

( ) >- - ' U~

. ) 

Sc i)- - -- )A. i -

Al *,I4 -,
tz0

HC"- -

v 601-1 E-- (f-

wnwLsa



64

1.55

NOTISE

-1.55

1.55

-1.55

-1.55

-1.55 J

r .55 (u xr (-T -111 JF-.11 ) I IRI - 1 "1. 1E * 11ji- in '.

Fi m '- a



65

C3

0 z ..... j

co u

0 Q, (1)

C- p a
9-u

.9In

-~ li

~ =~.- *CV

4.1



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The power cepstrum technique demonstrated the ability to

determine the epoch times of the echoes for the single and multiple

echo cases with echo amplitude being less or greater than that of

the reference wavelet. It was noticed that changing the relative

magnitude of the echo with respect to the original signal would not

change significantly the peak magnitude of the power cepstrum. The

experimental results proved to be in compliance with the theory.

It proved once more as reported in the literature, that the cepstrum

is very much data related as seen in the cases of damped exponential

and damped cosine waveforms. In the damped exponential type signals

it waF apparent that if the relative magnitude of the signal is

small compared to the original one and also if the damping coeffi-

cient is high enough, the only place that a strong peak occurs in

the cepstrum plot is at the time difference of the echoes, while

in the case of the cosine type waveforms, only at the epoch times

is the cepstrum peak strong enough to be detected and the time

difference is not discernable. In the case of damped cosine a

shift was noticed in the form of the power cepstrum. If tile

damping coefficient is high it will react like a damped exponential

waveform, and when damping coefficient is not high, it will

behave as a cosine waveform.

When both signal and its echo start at any point in time except

at the time zero, and t is changing, the value of the cepstrtim at
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two different epoch times would change, but sum of these peaks

together will remain almost constant (see Table 4-4b for cosine

type signal).

Adding some noise to the signals, the cepstrum was found to

be detectable, although the signal to noise ratio (SNR) should be

greater than 15.0 db (only the case of cosine waveform was tested).

Complexity and enormous number of peaks at the epoch times

and their harmonics makes it practically impossible to deal with

more than two echoes, as seen in our plots for three echoes, even

in the noiseless case it is very hard to exactly detect the correct I.

epoch times of the echoes. In double echo case, no detectable

change in the magnitude of the peaks in the power cepstrum were

noticed when the time distance was kept between two echoes constant.

The study was conducted with computer simulation techniques,

which might be different from real time problems, but comparison

with the theoretical results showed that it is not very far from

being correct. Most of the previous studies which have been made

using cepstrum techniques have been in the field of seismic or

oceanography and little has been done in medicine with the excep-

tion of a few theses and dissertation research from the University

of Florida. Further study should he conducted in the neurological

field, where reflection plays an important role. If the technique

is improved enough and progress is made, then one day human beings

might suffer less by early detection of in\ malfunction in their

neurological system.

4.a
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In the battlefield if the study is conducted for a majority

of armored vehicles, perhaps by making a table look-up type device,

the type of the vehicle can be recognized and so its capture or

destruction would be possible. Today with the help of LSI technol-

ogy, it is possible to make FFT processors and so it is relatively

easy to build processing equipments in which cepstrum techniques

can be of help.

Finally in Tables 5-1, 5-2, and 5-3, is a quick cross

reference for the study.
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DEFINITION OF TERMS USED IN THIS PAPER

In order to get a meaningful terminology for the cepstrum

technique, Bogert et al suggested the use of certain paraphrased

words for the various quantities encountered. Table I shows

these paraphrased words also its equivalent in frequency domain.

TABLE I

Power Cepstrum Frequency
Domain Domain Definition

Time Frequency

Frequency Time

Quefrency Frequency

Cepstrum Spectrum

Analysis Analysis Procedure of summarizing,
looking at, or dissecting
data

Cepstrum Spectrum A dissection of the vari-
aiice of time series into
portions associated with

variou , quefrencies
(frequencies)

Complex Complex A shifting of frequency
Dedomulition Demodulation (frequency) in a time

series by multiplication
by sines, and by cosines,
of a certer quefrequency
(frequency), followed by

smoothing (and sometimes
decimation) of the two
resulting time series,
which con he regarded as
the real and imaginary
parts of a complex series
(anal ogus to single-si de-
band modulation)
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TABLE 1 (Continued)

Power Cepstrum Frequency Definition
Domain Domain

Cross Cepstrum Cross Spectrum A dissection of the com-

mon variation of two
time series, into portions
associated with various
quefrencies (frequencies)
which takes into account,

and separates both syn-
chronized common variance
(covariance) and anti-
synchronized common var-
iance (covariance) and
antisynchronized common
variation (quadrature)

Darius Radius Modulus of complex number

Gamnitude Magnitude Modulus of complex number

Liftering Filtering A transformation of one
time series into another
which a) obeys the
superposition rule (is

additive) and b) is
invariant under changes
of time origin.

Lifter Filter A device, formula or pro-
cess for making such a
t rans format ion

Long Pass Lifter High-Pass Filter One which passes more
rapidlv time varying com-

polnents more readily

Lopar Polar Plot or coordinates in

terms of modulus and
angIe

fuefrency Frequency 'I'e nIimbcr of ; t irm
series per ini t t ime.
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TABLE 1 (Continued

Power Cepstrum Frequency Definition
Domain Domain

Rahmonic Harmonic One of the higher que-

frequency (frequency) com-
ponents generated from a
sinusoidal component of
time series by a non-
linear process applied

to the time series or any
equivalent time function

Repiod Period The amount of time
required for one cycle of
a time series

Saphe Phase Angular displacement
between a sinusoidal
oscillation and a ref-
erence cosinusoid of the
same quefrency (frequency)

Short-Pass Lifter Los-Pass Filter One which passes rapidly
varying time components

more readily
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Extending the cepstrum discussion to more than one echo or

multi-path signal is not difficult. We limit our study to the

case of an original signal plus two echoes. Suppose z(t) is the

signal comprised of the original signal y(t) and two echoes, then

Z(t) can be written as

z(t) = y(t) + a y (t-Tl) + a2 y (t - T 2 ) (B-1)

taking the Fourier transform of both sides in (B-l)

F(z(t)) = F(y(t) + a1 y (t -T 1 ) + a2 y (t -T2))

= F(y(t)) + cI F(y(t - 1 ))+1 2 F(y(t - T 2 )) (B-2)

where F( ) is the Fourier transform.

Calling Fourier transform of z(t) and y(t), Z(w) and Y(w)

respectively and considering time shifting property of the Fourier

transform (B-2) can be written as

Z() = Y( ) + ly() e- , 1 + a 2 
y (() e 2 (B-3)

or

Z(/) = Y ()(1 + It
l C- Jtl + 2 2) (B-4)

taking absolute value of both sides

!Z(")1 2  = ( + e' . 122) 2  (B5)
++

(13-5) is comprised of two parts
,2y() 2 (B -E',

and

(1 + + (-7)



78

expanding (B-7) one gets

( + a Cos WT - J sin WT + a 2 COS WT2 - j 2 sinWT2 ) I 2

= I(l~~ 1 c 1osT1 +1 2 coswT 2) - j( 2- sinwT +c 2 sin r2 ) 2

+ al2 +a 2 + 2 alCOSWTI  2u COSWT + 0, I COsW(T2-T
1 2 1 1 2 2 1 221

+ a 1a 2 cosW(T 2 + T1 ) (B-8)

Lets call

A~i~a2 2(B)
+1 +(a 2(B9

then (B-7) can be written as

2al 1 2  O'l 2
COS (os + 2 X COS WT 2 + COS W(T 2 - TI)

+ cos t(o 2 + T (B-1O)

now taking logarithm of both sides of (B-5)

1 1 2,t 2
2Qn I Z(w) = 2 nIY(nl) + - n ; + .n + cos oWTI + X c s' 2

2* 1 2 1 122
+ XCOO( 2- 1) + ,---.COS ,1 2+1]l) (B-1l)

Note that 1 and 1 2 are both 1 ess than one and for some 0, 11 and

r2  we can have

2 2 1 1
-1" -- s - "2+ (--)+-(+) 1

(B -1 2 )
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also £n(l + X) can be expanded as

1 2 1 3 1 4
kn (1 + X) = X + 1X X X <  (B-13)

Thus up to the first approximation (B-i) can be written as

2ca 2cx2 + leI 2

2 l()I Z (w = 2Zn IY(w) I + 2 -nX +- S w+2+

cos W (T 2 -TI) + 2 cos W (T 2 +TI) (B-14)

Taking the Fourier transform of both sides of (B-14) will result

C (z(t)) = CEPSTRUM = Ff2 kn IZ(w)I = F[2 in IY(w)I +F[ kn X ]
pl2

AF ~coswT 1 + -X COS WI2 +---yX COS W(T 2 -1 1 )

+ 12 cos (T 2 +T l ) (B-15)

or

C (z(t)) CEPSTRUM = F[2:nY()I + F[- V.nX + 2 F[cos 0 I]
p2

2X2 2 li' 2+- - F[cos,,,,2 ] + ), Ficos )( r2- '1)

+ 12 F cos 1 4- ) (B-16)

(B-16) has several terms, the first part will give a regular func-

tion not necessarily an impulse, the second term gives an impuls,

at the origin and the remaining parts would give impulses at the

points t '2' '2- ] .1 2+11 on the c ps ra plot (F]igur, (-51b).

In the case of more than two echoes, the proccdure is the same

but a little more involved. In Appendix G we shoW ce psitrum plots

for the cases when there are more than two echoes.
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It is desired to calculate the cepstrum for a signal which

is a combination of two cosine signals. The signals have started

at two different times with different strength and although both

have the same frequency, they differ in phase. Figure C-1 shows

these signals and their combination. The observation period is

from time t = 0 to time t = T seconds.

To proceed lets follow every step mentioned in the main text

for calculating the cepstrum. Lets define the signals as

fI(t) = cos W (t - 1 )u(t -T 2
)  (C-l)

f 2 (t) = a cOSW (t - T 3 )u(t -T 4 )

f(t) = cOSWo (t - T1 )u(t - T 2 ) +a cosw(t-T3 )u(t-T 4 )

The first step in the calculation of the cepstrum is finding the

Fourier transform of the signal

F[f(t)] = f f(t) e-jw dt

T -
=fcos~io(t-T 1 )eJ~d + f r~cSwo(t- r3)e-j dt (C-2)

2 [4

using Euler's identiv (C-2) becomes

Fif(t)] = - [ejAo (l r 1)+ e- o ()0 ej tdt
2

+ . f 3eW I T 3 +e - 3J e1-tdt (C-3)
2
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doing some mathematical manipulations (C-3) can be written as

2If~) 2 [w(cosA -cos B + cos C- cosD)

+ w (cos A- cos B- cos C+ cos D

+ Jw (sin A- sin B + sin C- sin D)

+ Jw (sin A- sin B- sin C + sin D)
0

+ caw ( cosR - cos S + cos T - cos U)

" caw 0(cos R - cos S - cos T + cos U)

+ jaw (sinR - sin S + sin T -sin U)

+ Jaw (sin R -sin S -sin T + sin U)]
0

(C-4)

where

A = WT W T + W T

B =WT 2 -w Tl2 +wTo

C 61-T + w 0' - w 0

D WT 2 +1o T2 ol,0

R WT - W T + Wi T

S WT 41 - Wi T + h) T3

T 6)T - WiT 4  W iT 3

S(,T 4 +wo T4 o3 (C-5)
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Equation (C-4) has real and imaginary parts, to find its magnitude

both real and imaginary parts should be squared. Doing the pre-

vious operation involves lengthy and cumbersome calculations that

finally would result the following:

JF(f(t)) =2 [4-2 cos (A-B) +2 cos (A-C) - 2 cos (A-D)

-2 cos (B-C) - 2 cos (B-D)- 2 cos(C-D)I

+ W0 2 [4-2 cos (A-B) - 2 cos (A-C) + 2 cos (A-D)

+ 2 cos (B-C) - 2 cos (B-D) - 2 cos (C-D)]

+ W 2 [4-2 cos (R-S) - 2 cos(R-T) + 2 cos (R-U)

+ 2 cos (S-T) - 2 cos (s-U) - 2 cos (T-U)]

+ U) 0[-4 cos (A-B) + 4 cos (C-D)-4 cos (R-S) +4cos(T-U)]

2

+ [Ial (2 cos (A-R) -2 cos(A-S) + 2 cos(A-T)

-2 cos (A-U) - 2cos(B-R) + 2 cos(B-S)

- 2 cos (B-T) +2cos(B-U) + 2 cos(C-R)

-2 cos (C-S) + 2 cos(C-T) - 2 cos(C-U)

-2 cos (D-R) + 2cos(D-S) -2 cos(D-T)

+2 cos (D-U)

L Jr
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* aw [2 cos (A-R) -2 cos (A-S) - 2 cos (A-T)

+ 2cos(A-U) -2 cos (B-R) + 2 cos(B-S)

+ 2cos(B-T) -2 cos (B-U) - 2 cos(C-R)

+ 2 cos (C-S) + 2 cos (C-T) - 2 cos (C-U)

+ 2 cos (D-R) - 2 cos (D-s) - 2 cos (D-T)

* 2 cos (D-U)]

+ Ct~WW 0[4 cos (A-R) - 4cos(A-S) - 4 cos (B-R)

+ 4 cos (B-S) - 2 cos (C-T) + 2 cos (C-U)

+ 4 cos (D-T) - 4 cos(D-U)] (C- 6)

substituting values of A, B, C ... in each term of (C-6) will

result terms that are completely independent of ui and also

certain terms dependent on w To check on these, lets define

2 wo(21 -21

3 o 1 2

4 ()o -212 + 2T 1

=' ( 1 -r +3)

'6 0 1 4 - 3

1 7 (" .(-2f + i I + 7 3)

8 = (-+r T 1 T4 + 1 3)
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*9 o(0 2 + TI + 3 - T3)

o W mo(-T 2 + 
T 1 

+ 
T 4  T3 )

= o(-r2 + Ti - T + T 3)

*12 = 0o(-t 2 + T1 - T4 + T3 )

*13 Wo (-T + T4 )

14 w 0o(-2T + 2r 3 )

15 = w0 
(- T + 2T3 T4)

16 = w0o(-2-t 4 + 2T 3 )16

and

Y1 I T - r 2

y2 T T 4

y3 T -T 4  (C-7)

after substituting (C-7) into (C-6) then

JF(f(t)) 12 1 o 2( 2_ o2)2 [1 + -"' [C 1 - 2cos-(y 1 +

- 2 cos (G1 + 3) - 2 cos(-,.q I + ,3)

- 2 cos o (y -* ) - 2 cos(ly 2 + 3)

- 2 cos (uY 2 + 15 2 cos (-uy"2 + 15)

- 2 cos(r 2 -,132 - 2 cos (()y 2 +
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-2 cos (wY2 + 8 -2 cos (-w-yI + @9)

+ 2 cos (wy3 + 5I0 2 cos (-wyI + i

+ 2 cos (W-y 3 + -12 2 cos (wY2 -

- 2 cos (wy2 - 43) - 2 cos (-wy1 -

+ 2 cos (wy3 - 12 ) - 2 cos (-wyI - 09)

+ 2 cos (wy 3 - 00

C2 - 4 0ci os(y + ) + 4~o cos ( wy- i ) )

+ 2-4w2cos( + 2+ 4 2os o y1  - 1

2oo~y 2 1 os( 1o o 2 1

- 4c tw cos(oY2 + )6) -4 aw cos(-w y + 49)

+ 4 a w cos(wY3 + + 2 cw oS(coy 2 - )3)

+ 4 oaw cos(-wyl- 4)9) - 4cow 0oS(wy3 - 40)]

2
w

+ o [-2 cos (w-Y + + 2 cos (wy + + 2 cos (-coy +

- 2 cos (wyl - 2) - 2 cos(Wy 2 + t13)

+ 2 c 2cos(1oY2 + ,15 ) + 2(x2 cos (-co7 2 + 15

2- a 2 c -s 1 (C-8)
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with

C 2 (4 2 cos 2 - 2 cosp 4
] + (aw [4 - 2 cos 1 4 -2 cos@1 6 ]

+ aw 2 cos 5 - 2 cos p9 ] CONSTANT

C= [4 + 2 cos 2 + 2 cos 4] + a
2 [4 + 2 cos 14 + 2cos 1 6

]

+ a [ 2 cos 5 + 4 cos 7 + 2 cos 9 ] = CONSTANT

and

C2 =o W0 [4 cos 5 - 2 cos4 7 ] = CONSTANT (C-9)

then (C-8) can be written as

jF(f(t))j 2 =1 + G()] (C-10)

tak.ng logarithm of both sides of (C-10) one gets

2
QnIF(f(t))( = Zn (W2_W 2)2 + q.n (l+G( )) (C-Il)

0

where G((,) is a function of w .

For some values of w , there will be a C(w) such that

!G(u,)) < I and then In(l + C(w)) can be expanded as

Zn(l + G(w)) = C(.) - I-(G(w))2 + _I (G())3 +. (C-12)

taking the first term of this expansion (C-Il) can be written

9n(F(f(t))12 = -2 'n(,, 2 -(1 ) + G(w) (C-13)
A(
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and finally cepstrum is found when the Fourier transform of both

sides of (C-13) is calculated

C p(f(t)) = CEPSTRUM = F[ZnIF(f(t))1 2 =F[-2 Rn(w2-w 2)]+F[G(w)]

(C-14)

Right-handside of (C-14) is comprised of two parts, first part which

is a function of w with certain Fourier transform and the second

part, Fourier transform of G(w). G(w) is a set of cosine wave-

forms such as cos(wyi + i=1,2,3, J=1,2,...16 and their

Fourier transforms have exponentially weighted impulses at points

Y1,Y2, and y3 * Consequently in the cepstrum plot peaks will be at

points y = T-T 2, Y2 = T-T 4 9 and y3 = T 2 - T 4  (Figure G-3b) or in

the other word there is a peak at the time of beginning of each

signal plus a peak at the time difference of two starting points

for the signals. Examaning the terms in (C-8) will reveal that the

relative magnitude of the peak at the point y3 
= 

T 2-T 4  is small

compared to those for starting times. Using more terms of the

expansion in (C-12) would result in a term which causes a peak at

point T2 + T4 sum of two starting points, in the cepstrum plots.

The computer simulated plots for this case of our study can be

found in Figures G-1 through G-4.



APPENDIX D

CEPSTRUM DERIVATION FOR COSINE TYPE WAVEFORMS WHEN

THERE IS A WINDOW WITHIN A WINDOW

-... _ _ ..-. .[



91

Figures D-1 through D-4 are four cosine waveforms which have dif-

ferent phases and strengths. The equations for these four signals are

f1 (t) = cos Wot f2 (t) = cos Wo(t-[)

f3(t) = ccoswo(t-V) f(t) = cos Wo(t-T) + U COS W(t-v) (D-i)

It is obvious from (D-i) that f(t) is the combination of f2(t) and

f3 (t). These four signals have all started at times t ,i=l,2,3, 4

seconds with t4 equal to t2 or t3 depending which is the smaller one.

Now suppose we want to study the cepstrum for f(t) while it

is observed through a time window having length X-y seconds which

is defined by

u(t-Y) - u(t-x) (D-2)

as is shown in Figure D-4 with dotted lines. The procedure to find

the cepstrum is finding the Fourier transform of the signal, the

squared spectrum, the log-squared spectrum, the Fourier transform,

and finally the spectrum again. Now with regard to all above

operations we proceed to do the calculations.

F[(f(t))] = f [cosw (t-r) + ' cosw (t-\)]
0 0

[u(t- ) - u(t-)]e -JU~tdt (D-3)

Term [u(t-if) - u(t-X)] is a combination of two unit step functions

which cause uhe limits of the integration to be and . Now with

these new limits (D-3) becomes

Ff (t)1 = r COS,,. (t- T)

+ C ('OS 0t - )] e1 dt (D-4)
0
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using the Euler's identity for cosine (D-4) can be written as

A Vi [•j (t- e-J (t-t)

F[f(t)] = o[e0o  + el

! [ejwo tv+ e-jwo(t- v)j e-J tdt (D-5)

-jw t
multiplying e into the bracket and taking all variables not

dependent on t out of integral one gets

F[f(t)] = e f ej(W-wo)t dt

2y Y

+ -leljwo- f X e- j ( w+ wo ) t dt

e-J~oV fAeJ(W-W)tdt

Y

+ -1a eeo' fej(+wo) tdt (D-6)

Y

(D-6) is comprised of four parts each having a term such as

y
e eidt = -( e _ % (D-7)

When these four terms are integrated and combined the result is

I e-(w ,  + iA-~ -A) e-j( ,jo +~y-~ y )

F[f(t)] =[e- j2(0 [ o o - o o
0

+ e- (GoY +  o ) e -j (o" + y - ") y ) ]

[e- j (- (,) T +(0 + ( 0)-e- j (-(, 0 + + 10 Y)
- 2 (,+,, )[ oo - oo

0

+ e- -  ++ ) - (j - + .Y + 0 )]

(D-8)
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f(t Cos wot

1

Figure D-1

Figure D-2

3 0

Figure D-3

fI (t) f2 (t) + f 3 (t)

Figure D-4

6 AK-
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with (D-8) having real and imaginary parts.

The spectrum of a signal is found by squaring the real and

imaginary parts and then taking its square root. In doing this

after some mathematical manipulations one gets

IF(f(t))l 2 5 1 i+ - (CosW(T-y)+3aCosw(,-Y
W, -W

- (i +a) 2 cos (W-) - (l+ct 2 ) cos (W+Wo) - c COS(W (T-y)+(W-WO)4)
0 0 0 0

- a cos(W (T-y) - (w-uo)p) - a Cos(-W (T-Y) + (W+Wo)M

-acos(Wo(T-y) + (W+w)4)] (D-9)0 0i

where

To find the cepstrum logarithm of (D-9) should be taken.

As is shown previously Zn(l + X) when lXI I 1 can be

,expanded to

1 2 1 3_ 1 4
Zn(l + X) = X - X + - X X + ... (D-O)

also

nAB = inA + .n B (D-11)

Knowing K< < and also Icos X1 - 1 , it will be justified

to have assumed that the term in the parenthesis in (1)-9) is less

than one and with this (D-9) can be written as

I.f
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n, I2 (n [21 2 + (cos a(T-y)+3ucosw (T-Y)
W -W

O
wL

- (1 + a2 ) cos (W-Wo) - ( +a 2 )cos(o+w) - a cos(W0 ('--)+(Y)-o)@)

- acos(W (T-'y) - (-WM - a cos (-W (t-y) + (W+W )

- a cos (CU (1-y) + (W+W 0)) (D-12)

The final step in finding cepstrum of f(t) function is to find

the Fourier transform of (D-12) again with this in mind that the

variable of integration, representing time, here is w instead of

t. With a glance at (D-12) presence of several cosines such as

cos 0(x-N) = CONSTANT and cos(A + w4) with A as a constant

phase is obvious. The Fourier transforms of these terms is

B - A CONSTANT- BS(f)

Cos (W t+0)*--> IEe"j 0(f-f )+e- 1 '(f+fc) I
c 2c c

(D-13)

which shows impulses at t = 0 second and t = f seconds.C

Translating terms such as these into the cepstrum plot would give

peaks at t = 0 and t = -y seconds which proves the existence

of peaks in the cepstrum plot only at points K(\-y), K=l,2,...

(length of time window) and its harmonics.



APPENDIX E

CEPSTRUM DERIVATION FOR DAMPED EXPONENTIAL TYPE SIGNALS
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Figure (E-i) shows three signals which are exponentially

damped. Figure (E-lc) is the combination of Figures (E-la) and

(E-ib). The equations for these signals are

f I(t) = (t-T) e- C(t-T1 )u tr

f 2 (t) =A(t-Tr2 ) e-C(t-T 2 ) U (t-T 2 )

f(t) f f 1 (t) + f 2 (t)

=(tT 1 ) e- C(t-T 1 UCt- 1 +A (t--t2 ) e- C(tT 2 ) ( )

(E-1)

Fourier transforming f(t) when it is observed from time t=O

to time t=T seconds would result

F[f(t)] f f(t) e * dt

+ fA(t-c 2 e -C~t- 12) e-jk.t dt (E-2)
T2

(E-2) can be broken in four parts as follows
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0.02f(t

f 2 1 (t)

f (t)

0.00.002 .3 .005

TIME SECONDS
IT-TRtI1I EXI' (-toD (T-TRfl I Ii (r-TR~Ui +- 6 U~-1f0021 CXI' (-Mo Cr-rnvrII 1 Vr-rHL121

Figure E-1.

.~ _ _ _ _ _ _ _ _ .. ..
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Fff(t)] T t e- (C+jW) t e CTdt

1 e- (C+j W) t eC'l d

+ i Af t e dt

T

F\ )]= ft -(j) eC 2 dt

2

- 2 f e-(C+w)t eCT 2 dt 
(E-3)

Lets have these new notations for the simplicity reason

TI

(2 A=-J e-(C+jw)t .CT1 d

T

(t) = A me 
e Cdt

2- (C+jW)t CTI

T 2 
T

T1
(4) = -T f- (C+j w) T CT 2 d E4

-3=A /t e e 2 dt(E3

'2

(1) = fAT te (C+jW. tCTld

=A ee dt(E)
12

So (E-3) can be written as

Fff(t)] = (1) + (2) + (3) + (4) (E-5)

To find the Fourier transform, each term is calculated separately and

then the results will be added to give the Fourier transform of f(t)
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CTI(C
2 - 2

(i) e(C 2 + 2)O2 LWT ( (+w) sinWT

+ (j)W-Y) COS WTC + (j +-X) sin-w (E-6)

with

= e- CT (-CT-I)

-CT
= -CTI (C, -l

- CTI (E-7)

and

(2) = - cos WT + s-H - in Tc W2C 
2 + W 2

-fC + j,, 
'W+ j~C-

I.

ccos + W 2 c si (E-8)

with

H C (T -1 (E-9)

eCt2 (C 2_CO- 2wC)
(3) = A e 2 2 2 - j6wCOS jasin WT -Wsin u

vQ cosw2 + jO cosI 2 +jv sin wr 2+ ,co sin wrT2  (E10)

with
C= eCr 2(- 12 - )

-CT 2 (E-11)
-= 2 e
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and finally

(4) = AKC - jAKw COSWT -KA jAKC
C 2 + W 2  cocJ + 2 + W 2  snm

{-AT2 C + JAT 2 CAT2w + JAT2 CI
+ S2 + W2 2 + 2in 2 (E-12)

with

K = e C (T2 -T) (E-13)

The Fourier transform of signal f(t) is sum of (1), (2), (3), and

(4). Doing summation operation one gets

F[f(t)] = (DI + jD 2 ) coswT + (D2 - .jD1) sin WT

+(D 3 + iD 4 ) COSWTI+ (D4 - jD3) sin wT 1

+(D5 + jD 6 ) coswr 2 + (D6 - jD 5 ) sin WT (E-14)

where

D1 = MQ - N(3c + Pt - OS + R + R
1 1 2
D 2 = - Mw - Nct - P~iw -Q r - TI1 - T 2

D 3 = -"I + NAw - SI

D4 = MY. + N) + Ul

D 5 = -Pv + Ow - S2

D6 = P w + vQ + U2 (E-15)
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and

R- CH AKC
1 2 2 R2 2 2

C-I+w C +W

T 1 C A 2
1 + 2 C2 2

T Hw T- AKw

1 2'2 U2 2 2
C +W C +w

2 2

2 2 2 222

1 - 1U-w
(C 2 +(0C2

2 2
PM C1 T C-

2 22
C + )

PQ A e' r2 C2 (E16

C 2 k~

Next step in calculating the cepstrum is of finding square of

absolute value of (F-3). After some mathematical manipulations

the final result is

1Ff~))2=(D121 2 2+D 33+D4 2 + 9

+ (D 1 ) 1)3 + 2D + 1) 4) + -I I

+ (21) 2 D3 + 2D) I)D 4 sn(i-i I

+ (2D)4 D 6 + 2D 3 1)5) CoSw( 2 -T I

+ (2f)1I1D5 + 21) 21> D o 6 (
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+ (2DID6 - 2D2D5 ) sin (O2- T

+ (2D4D5 - 2D3D6) sin W(r 1 -T 2) (E-17)

To find the cepstrum logarithm of (E-17) should be taken.

As in the previous case (E-17) can be written as 1 + G(M) and

for some w , Zn (1 +G(w) = G(w). Then when the Fourier transform

is taken, there should be weighted impulses at TI, T29 T 2 -TI but

as we will show with an example the strength of these impulses

depends strictly on the value of the damping coefficient C.

Example: Let

C = 30.0

T = .5 sec

SI = .07 sec

2 2 .12 sec

A = .6

Then

C2_2 21

D1 = -1.47x0
- 4  C-W + 2.77xi0

4 
- W +9.81xi0 - 7

C2+ 2 " C2+-2 2 2 22

D = -4.61xi0
- 6  2 (C22) + 8.45xi0

- 3  2)
2C 2 +i2 C C2+w 2

C2-,.2 2w 2 _
D3 = 3.1 2 + 2.1 2-2(C2+, 2) 2C2+W

D = 0.07 "(C -w -186 ----- + 07
(C2+C) 2 C 2 2
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D 1.56w2 + 2.76 C 2
- 8.64

5 +W

D= 7.2x0 - 2  (C22) -166
C2+W2 C2+W2

Substituting values D1 through D6 into (E-17) will show that the

only term with noticeable strength is the coefficient of

cos W (T 2 -T 1 ) or the only visible peak in the cepstrum plot 1
is the peak at the time difference T . For computer

simulated results see Figures G-11 through G-14.

.1
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A SYNOPSIS AN) LISTING OF DIGITAL COMPUTER PROGRAMS
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A SYNOPISIS OF DGTLCOMPUTER PROGRAMS AND THEIR LISTING

The Univac 1108 computer at Mississippi State University Com-

puting Center was used for the development of all runs and simula-

tion plots in this study. The programs are all written in FORTRAN

IV.

The programs are all written in a machine independent form,

such that they can be run in any type of computer with very little

change. Effort has been done to write the programs as clear and

as sufficient as possible so the computer run time and consequently

the cost would be minimized. There are enough comments in each

program to clarify any operation in the programs. At this point

it is appropriate to give a brief summary of each program.

MAIN PROGRAM

The main program reads and writes the initial data input also

calculates the power spectrum after taking the Fourier transform

for the first time, then it finds the logarithm of the square of

the power spectrum to send it to the subroutine FFT for Fourier

transforming again, it then calculates the Cepstrum.

The number of sample points for the original signal is 2048

samples/second and the total period of sampling is 0.5 seconds. We

tapered the first and last 20 points at each end of the cepstrum

data. This tapering operation involves multiplication of the ith

value from each end by 1/2 [1 - cos ,(i/20)] , thus making a smooth

transition from values multiplied by zero to those multiplied by

unity. Finn]lly we plot the cepstrum versus time to observe its peaks.
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SUBROUTINE SIGNAL(Y) (Cosine)

This subroutine generates few cosine waveforms with different

strength and phase but same frequency. The main signal is

y (t) = cos ( 27rf(t-T 1 ) u (t-T1 )

and the echoes are

yi(t) = i os (2 ! f(t-r.)) u (t-T i)

<1
1 -

where f is the frequency and T. is the epoch or echo delay time

the composite signal is the one whose cepstrum is sought.

SUBROUTINE SIGNAL (Y) (Cosine plus Noise)

This subroutine is like the previous one except that it mixes

the white Gaussian noise with the composite signal to make a noisy

signal. The complex array Y is generated and sent to the main

program. Statistical property of the noise is investigated,

signal to noise ratio for the signal is also calculated.

SUBROUTINE SIGNAL (Y) (Damped Cosine)

Subroutine signal for damped cosine will generate a few

damped cosine waveforms of the type

-C(t-1 .)
v.(t) = i. cos (2 "f(t-T.)) e i u (t-Ti)

11 11

1
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each with different strength. Parameters f and T i are as in the

previous case and C is the damping coefficient. All variables can

get different values furnished through the main program.

SUBROUTINE SIGNAL (Y) (Damped Exponential)

In this subroutine few damping exponential signals are

generated each starting at different times and having different

strength. The signals are

-C(t-T.)
Yi(t) = ci(t.-Ti ) e 3 U (t-T i )

a. =<1.

Again T. s are the epoch or echo delay times. These signals will
i

be added together to give the composite signal.

SUBROUTINE WINDOW (I,N,W)

This subroutine does the windowing process based on Kaiser-

Bessel equations with = 8.0. I is the sample point, N is the

total number of samples and W is the weight which is calculated

in this subroutine.

SUBROUTINE FFT(X,M)

This subroutine will calculate the Fourier transform of a

complex array X with total number of data to be 2M. The routine is

a Fast Fourier Transformation based on Cooly-iky a g lrorithm.



109

The complex array X is returned as the Fourier transform of the

input array X. The maximum value of M is 10 which can be increased

if the respected dimensions in all routines of this report are

changed.

SUBROUTINE SMOOTH (N,Y)

Smooth subroutine does smoothing process by Hanning method,

N is the total number of points and Y is a complex array of data to

be smoothed. After the process is done array Y, the smoothed one,

would return.

SUBROUTINE RANSET (MAXINT, NSTRT)

Subroutine RANSET in coorperation with subroutine URAND con-

stitute a machine independent random number generator having

specially good statistical and correlation properties. MAXINT is

a very big integer depending on size of the computer (for example

32000 for a PDP-11 computer) and NSTRT a small integer usually 0.

REAL FUNCTION IURAND (FRAN)

This real function subprogram has been used in cooperation

with subroutine RANSET to generate the white Gaussian noise. FRAN

is a dummy variable which can be anything. The necessary parameters

needed in this program are furnished through a common statement from

RANSET subroutine.
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SUBROUTINE SHEKL (BA,NPXNAMEYNAMEEMIEXIICI)

Subroutine SHEKL is a plotting subroutine which plots array A

versus array B. It is a machine independet plotting routine with

NP being the total number of points to be plotted and not necessarily

the total number of data in arrays A and B. XNAME and YNAME are

two 16 character axis title for X and Y axis. EMI and EXl are the

minimum and the maximum given to the Y-axis if desired to do so and

finally ICI is set equal to zero if no desire for setting maximum

and minimum for Y axis and is set equal to one otherwise.

SUBROUTINE RPRD

This is the only machine dependent routine used in the entire

study. It is used to plot the Cepstrum and is fed for its variables

through common statements by the main program and by the signal

subroutine. SIGCMP is a common statement bring variables from

the signal subroutine and CMPLOO, CMPLOI and CMPLO2 are three

common statements responsible for transfer of variables from the

main program to the subroutine.

kLm



A LISTING OF FORTRAN PROGRAM~S l

The following are programs and subroutines explained completely

in previous pages.
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4
COMPLEX Y (1024)
DIMENSION AMAGC1O24),XNAME(4) ,YNAME(4 ),P(1024)
COMMON/CMPL2INPT,F,ALfO,'ALF1 COEF TAU(3
COMMON /O ATAA /HNA ME(4) VNAM~E (41.0(1624 )
DATA XNAME14HFREQ,4HUEN-,4HCY 14H I
DATA YNAME/4HMAGN,4HlTU-,4HDE ,4H 1
DATA HNAME/4HTIME,4H SEC,4HOND ,4H I
DATA VNAME/4HSIGNi,4HAL ,4H 4

C'' IWNOw IS FOR WINDOWINYG IN TIME IWNDW 1 YES 0 NO
Ct*** IWNDF IS FOR WINDOWING IN FREQUENCY 1 YES 0 NO
I FORMAT(1H1)

2 FORMAT (3(I))
C
C*vt** SET ALL CONSTANTS USED IN THE PROGRAM
C 

IC=2

JJ=1
P1=3.141592654
PT? O=P 1(20.

C
C
C
C**** READ DATA FROM DATA CARD
C

READ(5 ,5) h ND,IWNDW,IWNDF ,T,I ,ALFO,ALFI,COEF

10 FORMATIBF1O.5)
C
C
C
C**** PRINT THE READ DATA
C

WRI TE (6,1)
WRITE(6,1Z) M,T,NDO,lWf40',IWNOfF ALFO.ALF19COEF

12 FORV~AT(23x,2m=9I2/23X,2HT=,Flo. /2lx ,IH ND=9121
.l9X,6HIWNDW=1I/19X,6HIWNDF=,I11/23X 2HFtFlO.5i
*20X,SHALFO=,FIO.5/20X,5HALF1=gflo.5120X,SHCOEF=,

S1 o. 5 )
00 20 1=1 ND
WR17E(6 15) I,TAU(I)

15 FORMAT d7X,4HTAU(,12,2HszIO.5)
20 CONTINUE
C
C

NP=2t M
IFCJJNEe1) GO TO 26

C**** CALCULATE FREQUENCY FOR THE FOURIER TRANSFORM
C**** NOTE THAT WE ARE USING FF1 AND THE FREGUENCY IS

C*'(NU)(FS)/NP WHERE FS=I/TS AND TS=SAMPLING FREQUENCY
TS:T/NP
F S z /T S
FSSzFSINP
P(1=0.N
TN T/1)N=P
NP1 =NP-1
DO 25 1=1,,NPI
0 ( 1 ) =7N *I
NU 1.1
PCNU)=I.FSS

25 CONTINUE

MAI N PROGRAM
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C4

C
Q(NP)=NP*TN

C

C*** GENERATION OF THE SIGNAL
CALL SIGNAL(Y)

C
C
26 CONTINUE

lF(IWNDW.EQ.O) 60 TO 40
C
C** DO THE WINDOWING PROCESS
C

DO 30 I1,NP
CALL WINDOW(I NPW
X=W*REAL (Y( M P5w
Y(I)zCMPLX(X,AIMAGCY (I)))

30 CONTINUE
40 CONTINUE
C
C** FIND THE FIRST FOURIER TRANSFORM
C

CALL FFT(YvM)
C

C**FIND THE LOG MAGNITUDE ALSO MAKE PREPARATION FOR
C*** TAKING THE SECOND FOURIER TRANSFORM
C

DO 60 I=l.NP
AMAG( I)=R EAL (YC I) **26A IMAG Cv (1))**
IFCAMAG(I).EQ.0.O) GO TO 50
X A L 0G10 A M AG (I1) )
YC I ) =C MP LX x, 10.0)
GO TO 60

50 CONTINUE
Xz-l1 .0 E 10
vC1 )=CMPLX(XO.0)

60 CONTINUE
C

C
C**** PLOT THE POWER SPECTRUM
C

WRlTEC (62)
WRITE(6 65)

65 FORMAT (Ox 934HTHIS IS GRAPH OF THE FIRST FOURIER,
*33H TRANSFORM OF THE COMPOSIT SIGNAL)

W RI17E ( 6,2)

NP=NP /2
CALL SHEKL(O AMAG,NP,XNAME,YNAME,EM,EX,IC)
NP=2' NP

IF(IWNDF.EQ.O) GO TO 70

C

CALL SMOOTHCNP,Y)

C
70 CON71NUE

MAIN PROGRAM (Continued)
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C
C*.*, FIND THE FOURIER TRANSFORM OF THE LOG SPECTRUM
C

CALL FFT(YM)
C
CC
Ct**, CALCULATE THE POWER CEPSTRUM
C

WRITE (6,1)
NP=NP/2oo0 90 1-=1 NP
AMAG(I) RT (REAL CY (1))*-2 AIMAG (Y CI))**)

IF(I.GT.20) GO TO 90
WRITE(6 80) Q(I),AMAG(I)

80 FORMAT (I (IOX ,GO.6))
90 CONTINUE
C
C,C
C**, DO SMOOTHING OF THE END POINTS PY MULTIPLYINGC*'*' THE FIRST 20 POINTS BY .5*(lo-COS(2.*PI*,l/20.))

C
DO 100 1=1,20
21=Pl20'*
Z2zCOS(Zl)
23=1.-Z2
Z4=.5*Z3
Z5Z4 *AMAG(I)
AMAGC I )=Z5

100 CONTINUE
C
C
C
C**'** PLOT THE POWER CEPSIRUM
C

WRITE (6,1)
WRITE(6 120)

120 FORMAT( OX,25HTHIS 1S THE CEPSTRUM PLOT)
WRITE (6,2)
CALL SHEKL(Q ,AMAG,NPXNAME,YNAMEEMEXIC)
STOP
END

MAfN PROflRAN (Continued)
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SUBROUTINE SIGNAL(Y)
COMPLEX Y(1024)
DIMENSION AMAG(1024),AMGA (1024) ,CMAG(1024)
DIMENSION DMAG(1024)
COMMON/CMPL2/NPTF,ALFO,ALF1 COEF TAUC3)
COMMONIDATAAIHNAME.C4) VNAME(4,QC1624)

C*'*** THIS SUBROUTINE WILL GENERATE FEW COSINE WAVEFORMS
C**** WITH THE SAME FREQUENCY BUT DIFFERENT STRENGTH
C'**** AND ARRIVING AT DIFFERENT TIMES

C**** TAU(I) Iz,2?,.. IS THE DELAY IN SECONDS
C**** F IS THE FREQUENCY IN HERTZC
C
1 FORMAT(1H1)
2 FORMAT(3M())C
C**** SET THE CONSTANTS
C

EM=1.EX=I.

IC=2
PI=3.141 592654
PI2=2**P
P 12 F=P 12 *F
TN=TINP
SS-OO
11=.2
T2=.35
CS3=0.

C
CC
C* * '* SIGNAL GENERATION
C

DO 20 1=1,NP
TM=TN* 1
TM1=TM-TAU(I )
TM2=TM-TAU (2)
TM3=TM-TAU (3)
1M1P=P 12 F*TM 1
TM2P=P12F*TM2
TM3P=PI2F*Tm3
CSI=COS (TM1 P)
CS2=ALFO*COS (TM2P)
CS3=ALF1*COS (TM3P)
IF(TM.LT*TAU (1) )CS1=O.0
]F(TM.LT.TAU (2)) CS2=0.0
IF(TM.LT.TAU (3)) CS3=0.
CS=CS1*CS2*CS3
AMAG(I)=CS1
AMGA(I)=CSZ
DMAG(I)=CS3
CMAG( I )=CS
Y(I)=CMPLX(CS,SS)

20 CONTINUE
C

C
C**** PLOT THE SIGNALS
C

MP s300
WRITE(6,1 )

SUBROUTINE SICNAL (Cosine)
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WRITE (6,30)
30 FORMAT (I0X,33HTHIS IS GRAPH OF THE FIRST SIGNAL)

WRIYE (6,2)
CALL SHEKICO ,AMAG,MP,XNAMEYNAME,EP ,EX,IC)
W RIT E( 6 ,1 )
WRITE(6 40)

40 FORMAT(IOX,34HTHIS 1S GRAPH OF THE SECOND SIGNAL)
WRITE (6,2)
CALL SHEKL(Q ,AMGA ",MP IXNAMEYNAME9EM9EXvIC)
IF.(TAU(3)aEQO.) GO TO 60
WR I E (6,1)
WRITE(6 50)

so FORMA7CIOX,33HTHIS IS GRAPH OF THE THIRD SIGNAL)
WRIYE (6,2)
CALL SHEKL(Q ,DMAG,MP,XNAMEYNAME,EMEX,IC)

60 CONTINUE
WRI 7E (6,1)
WRI TE (6 70)

70 FORMAT(1'0X,36HTHIS IS GRAPH OF THE COMPOSIT SIGNAL)
WR17E(6,2)
CALL SHEKL(Q ,CMAG,MP,XNAMEYNAMEEIEX,IC)
WRI TE (6,1)
RETURN
END

SUBROUCINI-E STCNAL (Cosine) (Continued)
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SUBROUTINE SI GNAL(Y
COMPLEX Y(10 4)9ANC1024)
DIMENSION AMAG(1024),BMAG (1024),CM4AGC1O24),ANS(1OZ4)
DIMENSION DMAG(1024)
COMMONICM2/NP,T ,F,ALFO,ALFI COEF TAUC3),FSNR,M
COMMON /DAI AA INA4E (4) VNAME 4)QII 024)

C**** THIS SUBROUTINE WILL GENERATE FEW COSINE WAVEFORM
C**** WITH THE SAME FREQUENCY BUT DIFFERENT STRENGTH
C**' AND ARRIIVING AT DIFFERENT TIMES,A.LSO IT
C**** GENERATES AND MIXES NOISE WITH THE SIGNALS

FORMAT (IHi)
2 FORMA(I))
C
C*'** SET ALL CONSTANTS USED IN THE PROGRAM

P1=3. 141592654
P12=2.*PI
P12 F=P12*F
TN=TINP
SSZO.O
SSN=0.0
EM1l.
EX1I.
1C=2
SUM :0O.0
SUM 2=0 .0
CS3=0.0

C
C**INITIATE TENOISEGERAO

C
CALL RANSET(1E*1O,0)

C
C

DO 20 11, NP
TM=TN *
TIi =TM-TAU (1 )
TM2=TM-TAU (2 )
TM3:Tm-TAU (3 )
7MlP=Pl2F*TMI
TM2P=P12 F .TM2
TM3P=P ?F .Tm3
CS1 COS (TM ipI
CS2=ALFO*COS CTM2P)
CS3=ALF1*COS (TM 3P)
IF( TM eLTTAU C) )CS1O=.0
I FC(TM*LT.*TAU (2?)) C S2=0.O0
I F(TM .LT TAU (3)) C 53=0.0

C
Cto'. NOISE GENERATION
C

CSN=UR AND CX)
CSN=FSNRa CSN
SUiM SUM.CSN
SUM2:SUM2*CSN**2
AMAG I )=CS1
BMAG( I)=CS2
CMAG I)zCS3
CSxCSI#CS2+CS3

SUBIROUTIINE, SIGNAL. (Cos~i ne P lus Noi se)
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YCJ)=CMPLX(CS SS)
ANC I)=CMPLXCN ,SSN)
ANS( I) =CSN

20 CONTINUE
C
C**** FIND MEAN,MEAN SQUAREDAND STANDARD DEVIATION

FNP=FLOA T (NP)
SUM=SUM/FNP
SUM2=SUM2IFNP
STDV=SGRT CSUM2-SUM**2)

C
C

C ** PRINT STATISTICAL PROPERTY OF THE NOISE

WRITE (6,)
C WRXTE(6 30)

30 FORMAT(TOX,35HSTATISTICAL PROPERTIES OF THE NOISE)
WRITE(6o2) I
WRITE(6 40) SUM SUM2 STDV

40 FORMATO ( SXHMEAN= M.6/,17X,8HMEAN SQ=,G13.6/12xg
*13HSTANDAR! DEV G1 . 6)

C

C**** FIND FFT Of TH4E NOISE AND THE SIGNAL

CALL FFT(Y,M)
CALL FFT(ANM)

C

C***** FIND SIGNAL 70 NOISE RATIO AND PRINT ITA
TOTLSO .0
7OTLN=0.0
DO 50 Iz1,NP
7TS=REAL(Y(I))*t2,AIMAG(Y(I))**2
TTN=R EAL (AN( I)) **2.AIMAG (AN (I) )*
TOTLS=TOT LS*TTS
7OTIN =TOTLN*TTN

50 CONTINUE
TOTLS=SQRT (TOTLS)
TOTLN=SQRT (1OTLN)
SNR=TO7LI /01 N
SNRz1O .'ALOG 1O(SNR)
WRITE(6,60) SNR

60 FORVMAT(21X,4HSNRz,Fl0.595H DO
WRITE (6.2)

C*** MIXSIGNAL WITH THE NOISE

D65 I11NP

CSzDMAG( I)

65 CONTINUE

SURROUTINE SIGNAL (CoS inC' Pis Noi SQ) (Continued)
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NP-300
WRITE (6,1)

70 FORMT(IO,26HH IS GRAPH OF THE NOISE)
WRITE (6,2)
CALL SHEKL(Q,ANS,MP,HNAMEVNAMEEM,EXIC)
WRITE (6,1)
WRITE(6,80)

80 FORMATdIO,33HTHI1S IS GRAPH OF THE FIRST SIGNAL)
WRITE (6,2)
CALL SHEKL(Q ,AMAGMPHNAMlE,VNAPMEEmEx,ic)

WRXTE(61 90)
90 FORMAl~l0X,34H7H1S IS GRAPH OF THE SECOND SIGNAL)

W R IIE ( 6,2 )
CALL SHEKL(O .BMAG,MP,HNAMEVNAMEEMEXIC) 1
IF(TAU(3).EQ.0.0O) GO TO 105
WRITE(6,1)
WRITE(6 100)

100 FORMAT(IOX,33HTHlS IS GRAPH OF THE THIRD SIGNAL) :
WRITE (6,2)
CALL SHEKICO ,CMAG,MP,H4NAMEVNAM'EEM,ExXC)

105 CONTINUE
WRITE(6 1)
WRITE (6 ,11)

10 FORPA7TDiX,37mHTHIS IS GRAPH OF THE C014POSIT SIGNAL)
10 WRiTE (6,2)

CALL SHEKL(QDMAG,MP,HNAME, VNAME,EM,EXIC)
WRI TE(6, l
RETURN
END

SUBROUT INE S ICNAI. (Cos ille Pl us No ise) (Continued)
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SUBROUTINE SIGNAL (Y)
COMPLEX Y(1024)
CONMON/SIGLOO/F,ALFO ,ALF , COEF
COMMON/SIGCMP/T,NP, TAU(3)

C** THIS SUBROUTINE WILL GENERATE FEW DAMPED COS SIGNALS
C** WITH THE SAME FREQUENCY BUT DIFFERENT STRENGTH
C**** AND ARRIVING AT DIFFERENT TIMES
C** TAU(I) I=1,2,.. IS THE DELAY IN SECONDS
C**** F IS THE FREQUENCY IN HERTZ
C
C
1 FORMAT (lHi)
2 FORMAT (3(/))
C
C**** SET THE CONSTANTS
C

PI=3,141592654

P 12=2 .*Pl
P12F=PI2*F

SS=O.O

CS 3=0.
C
C
C
C**** SIGNAL GENERATION
C DO 20 I=1,NP

TM=TN* I
TMI=TM-TAU (I)
TM2=TM-TAU (2)
TM3=TM-TAU (3)
TMM1 =PlI2F*TM1
TMM2=Pl2F*TiM,2
TMM3=P12F*TM3
CSC1=COSc (TiN)
CSC2=COS (TMM2)
CSC3=COS (TMM3)
CS1=CSCI*EXP (-COEF*TM1)
CS2=ALFO*CSC2*EXP (-COEF*PI2)
CS 3=ALFI*CSC3*EXP (-COEF*TM3)
IF(TM.L.T.TAU(1) )CS1=0. 0
IF(TM.LT .TAU(2))CS2=O.0
IF(TM.LT.TAU(3) )CS3=0.
CS=CSl+CS2+CS3
Y(T)=CI4PLX(CS,SS')

20 CONTINUE
PFTIRN
FND

SUBROUTINE SIGNAL (Dampedl Cosine)
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SUBROUTINE SIGNALCY
COMPLEX Y(1024)
DIMENSION AMAG(1024),BMAG (1024) ,CMAGC 1024)
DIMENSION DMAG(1024)
COMMON ICMPL2 INP TF,9ALFO, ALF1l COE F TAU( 3)

CCOMMONIDATAA/HNAME(4),VNAME (43,0(1624
C***' THIS SUBROUTINE WILL GENERATE FEW DAMPING
C**** EXPONENTIAL SIGNALS STARTING AT DIFFERENT TIMES
C**** AND HAVING DIFFERENT STRENGTHS
C
1 FORMAT(lHl)

2FORMATMM~)

C.

SS=O.
TN=T/NP
CS3=O .0

C
C
C
C**** SIGNAL GENERATION
C

DO 10 I=1,NP
TM=TN * II
7Mi =TM-TAU (1)
7M2tTM-TAU (2)
7M3=TM-TAU (3)
7MM1=EXP (-COEF*TMI)
TMM2=EXP (-CO E F*TM2)
TMM 3=E XP C-CO E F*TM3)
CSI=Tm1 'Tmml
£52 =AL FO*T m2*TMM2
CS3 =AL Fl TM3 'TMM3
IF(TM.LT.TAU (1)) CS1=O.0
IF(TM.LT.TAU (2)) CS2=O.0
IFCTM.LT.TAU(3) ) CS3rO.O
CS=CS1 *CS2+CS3
AMAG( I )CS1
BMAGC I )CS2
CMAGC I )CS3
DMAG( I )CS
Y(I)=Cr4PLX (CS,SS)

10 CONTINUE
C
C
C
C'** PLOT THE SIGNALS
C

MP =300
WRITE (6,1)
WRITE(6 30)

30 FORMAT(CIOX 33HT HIS IS GRAPH OF THE FIRST SIGNAL)
W RIT7E ( 6,?2)
CALL SHEKL(Q ,AMAG,MP,HNAME,VNAME,1.,1..?)
W RIT7E ( 6,1I )
WRITE(6 40)

40 FORMAT(NOx,34HTHIS IS GRAPH OF THE SECOND SIGNAL)
WRITE (6,2)
CALL SHEKL(Q ,RMAG,MP,HNAME,VNAME,l.,1.,Z)
IF(TAU(3).EQ.O.O) GO T0 60
WRITE(6,l )
WRITE(6 50)

50 FORMA7(1Ox,33HTHIS IS GRAPH OF THE THIRD SIGNAL)

SIJBROUT INI: STINAL (flarpedl Exponentilal)
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WRITE (692)
CALL SHEKLCQ,CMAG,MPHNAMEVNAMEole,1 .,2)

60 CONTINUE
WRI TEC6 1)

70 WRIYE(6 70)
70FOR1MATidOX936HTHIS IS GRAPH OF THE COI4POSIT SIGNAL)

WRITE (6,2)
CALL SIEKLQ,DMAG,MP,HNAMEVNAME91l., .,)
W R ITE ( 6,91
RETURN
END

SUBROUTTNE STGNAL (Damped Exponential1) (Con tinued)
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SUBROUTINE WINDOW(INW)
C**** THE wINDOWING PROCESS IS BASED ON KAISER-BESSEL
C'"'* (BE7A=8o) EQUATIONS

S=1 .OE-8
18=N/2

X=8.'SGR7 (1.-A.'?)
E1.
DE=1 .0

DO 10 J=1,25
DE=DE*Y/FLOAT (J)
SDE=DE**2
E=E *SDE
1 (E*S-SDE) 10,910,20

10 CON71NUE
20 X=E

wzx /4 2?.57
RETURN
END

SVIBRO(UTINE WINDOW
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SUBROUTINE FFTCXM)
C COMPLEX XC1024),U,W,T

C**** THIS SUBROUTINE WILL COMPUTE DIFT B3Y FIFT METHOD
C**** FOR REFERENCE SEE 107HE FAST FOURIER TRANSFORM
C**"* AND IT APPLICATIONS" BY JAMES We COOLEYP.A*W.LEWIS
C**** AND PETER 0, WELCH IEEE TRANS ON EDVOL.12,NO.1
C'"'* ,MARCH 1969 PP 27-34
C
C

NY2 **M

NI =N-1
J=1
0O 3 1=1,IN I
IF(IsGEeJ) GO TO 1
TwX (J)
X(J )=X C I
XC1)=T

1 K=N2
2 XFCKeGEoJ) GO TO 3

J=J-K
K=KI2
GO TO 2

3 J=J*K
PI=3.141 592653589793
DO 5 Lzl,M
LEz2**L
LEl =LE/2
U=( 1. 0O0O)
DOC 5P XJ1SPILEISI P L
DOC5 PL LE1PIE),I(Z/E)
DO 4 I=JN,LE
1D=1+LEI
T=X (10) U
XCI D)=X (I)-T

4 XCI) x(1)+7-
5 U=U'w

RETURN
END

SUBROUTIMEi FlFT
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SUBROUTINE SMOOTHCN,Y)
COMPLEX Y(1024)4

C**** THIS SUBROUTINE DOES SMOOTHING PROCESS BY MANNING
C***a METHOD

N1=N-1
X=(REALCY(1))+REAL(Y(2)))/2.
YC1)=CMPLXCX,AlMAG(Y(l)))
X*(REALCY(Nl))e-REAL(Y(N)))I?.
Y(N)=CMPLX(XgAIMAG(Y(N)))
DO 10 I=2I 
A=REAL(Y(I-1/4.
C:REAL(YCI.1))/4.
B=REAL(YCI))I?.

YCI)= CMPLXCXAIMAG (V(I))
10 CON71NUE

RETURN
END

SUBRoL'TTTNE SMOOTH
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SUBROUTINE PANSET(MAXINTNSTRT)
COMMON/MG/RAN(101 GEN(IO),NWRD,BASEMOD,FB3ASEFM~O
INTEGER RAN GENBASE CARRY,REM

C**** RANSET AND I IAEURAND CONSTITUTE A MACHINE INDEPENDENT
C*** RANDOM NUMBER GENERATOR mAvING SPECIALLY GOOD
C**.* STATISTICAL AND CORRELATION PROPERTIES FOUND IN
C**** VOLUME 11 OF THE FOLLOWING BASIC REFERINCE.
C*** EoGeMCGRATH .ET AL,"TECHNIQUES FOR EFFICIENI MONTE
C** CARLO SIMULA7ION
C** VOL 1. SELECTING PROBABILITY DISTRIBUTIONS
C**** (AD-762-721)
C**** VOL Ii. RANDOM NUMBER GENERATION FOR SELECTED
C**** PROBABILITY DISTRIBUTIONS(AD-762-722)
C**** VOL III* VARIANCE REDUCTION (AD-762'-723)

MAX IMAXINTI4
19=0
BAS E1

99 JF(8ASEwGT*MAXl) GO TO 100
BASE=BASE*4
1B=I84 1
GO TO 99

100 BASEZ..*IB
FaA SE 8AS E
NWR D=4?/ IB~1
REM=47-IB' (NWRD-1)
MOD=2**EM
FMO DMOD
DO 101 N=1,10
RAN (N ) =0
GEN (N ) =0

101 CONTINUE
G EN (1I) = 5
00 ZOO0 1=1,1 4
CAR RY=O
D0 190 N-i NWRD
GEN (N ) = GENIN ) *5 CA RRY
CAR RY=O
IF(GEN(N)*LTBASE) GO TO 190
CAR RY =GEN (N ) 16ASE
GEN(N)=GEN(N)-BASE*CARRY

198 CONTINUE
0 CONTINUE

NSTART=NSTRT
IF(NSTARTaLEoO) NSTART=2OO1
NSTART2'(NSTAR712)+l
00 300 N=1,NWRD
NTEMP=NS TARTIBA SE
RAN(N)=NSTART-NTEMP*BASE
NST ART :NT EMP

300 CONTINUE
RETURN
END

StiBROU1INE RCIANS 1T
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REAL FUNCTION UPAND (FRAN)
COMMON/MG/RAN(1O),GEN(10),NWRD,BASE,MOD,FBASE,FMOD
DIMENSION SUM(1O)
INTEGER RAN, GENBASE ,CARRYSUM,PROD,HPROD
DO 30 IS =1 *NwRD
SUM (IS )=0

30 CONTINUE
DO I IG=1,NWRD
N2=NWR D-IG-1
DO 1 1R~l N2
1S=IR * G-1
PRO D=RAN(IR)*GEN(IG)
HPROD=PROD/BASE
LPRODOPROD-HPROD'BASE
SUM(IS )=SUMC IS) *LPROD
IF(IS.LT.NWRD).SUM(IS.1 )=SUM(IS.1 )*HPRODCNTNUE0- '
CNTNUED-
DO 5 1 S~l N2
CARRY=SUM(IS ) BASE
SUM(IS)SUM(IS)-CARRY*1ASE

5 SUM (iS. )SjM(IS ) CARRY

SUM (NWRD)=SUM(NWRD)-MOD*SUMCNWRD)IMOD)
DO 20 151I,NWRD
RAN (1 )=SUM( IS)

20 CON71NUE
FRAN=SUWb C)
Do 10 is=2,NWRD
FRAN=FRAN/FBASE*FLOAT(SUM(IS))

10 CONTINUE
FRAN=FRAN/FMOD
URAND=FR AN
BP TURN
END

FI'NUTTON LIRAN!)
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SUBROUTINE SHEIKL(8,ANPXNAME YNVAMhE EMI,EXI,ICI)
DIMNSIN (NP),A (,NP , LN( XNAME(4),YNAME(4)

REAL LINE
LOGICAL MANLJALtSYME
DATA HlIIHSI ,LO/IHM/#,BLANK/11 I,DOTI1H.I,SrAR/IH*I
EMIN=EMI
EMAX=E Xl

MANUAL=.TRUE.
SYME=.FALSE-
IF(EMAX .EQ SEMIN) MANUAL~oFALSE*
IF(EMI1N.GT.EMAX) GO 7O 160
IISC=ISC
IF(MANUAL) IISC=1
IF(MANUAL) GO TO 11
Y?41N=1 .E38
YMAX=-1 E38
DO 10 I1,N1
IFMA().Gr.YMAX) YMAX=A(I )
IF(A(I)oLT.YMIN) YMIN=A(I )

10 CONTINUE
GO TO 19

11 YMAX=EMAX
YMIN=EMIN

19 XMIN=ABS(8C1))
MIN~l
DO 20 .J=2 qNP
I F( ASS (BW))*GE oXMIN) GO TO 20
XMIN=ABS (B(CJ )
MIN=J

20 CON71NUE
IF( IISC.*EQ .0) GO TO 21
RANGE=YMAX-YMlN
KAXIS=60.*(-YmINIRANGE)#1.5
IF(YMIN.GT.O .0) KAXIS~l
IF( YMAX .LT .0.0) KAX lS=61
DIS=RANGE/60.
GO TO 30

21 IF (YM IN.sGE O. GO 10 22
IFCYMAXeLE*O.) GO 10 23
KAX IS=31
SYME=.TRUE.
ABY=ABS CYM IN)
RAN GE =AM AX I( YVMA X, AB Y)
DIS=RANGEI30o
GO T0 30

22 K A X 15 =
RAN GE YMAX
DIS=RANGE/60.
60 TO 30

23 KAXIS=61
RANGE=-YMIN
DIS=RANGE/60.

30 CONTINUE
DO 40 K4=1 3
WRITE (6,503

40 CONTINUE
5O FORMAT(lImO)

WRITE(6,60) XNAME(1),XNAME(2),YNAMEC1 ),YNAME(2),
*YA!IN,YMAX

60 FORMATCX A4 'A4,TX A4,A4,3X,20HORDINATE AXIS& MIN=.
.613.6 ,3X ,HMAXz ,G1 3.6)

SUBROUTTINII SHEKL
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WR1TE (6,70) XNAME C3),XNAME(4),YNAMEC3).YNAME(4),DIS
70 FORMAT(2x,A4 ,A4,7XA4,A4,25X,1OHINCREMENTZ,G13.61)

DO 80 J~l .61
LINE(J )=BLANK

80 CON71NUE
DO 100 J2=1,NP
IFCJ2.EQoMIN) 60 TO 110
X=60.0. C(A Cj2)-YMIN )/RA NGE)
IF( IISC*EQ.O.AND*YMIN.GT.C. ) X=60.*CA(j2)/RANGE)
IF(SYME) X=30.* (A(j2)IRANGE)*30.
K=X41 .5
L TN E(KAX IS) DOT
IF(K.GTo61 ) LINE (61 )=Hl
IF(K.GT.61) KMAX=61
IF(K.GT.61) GO TO 89
XF(K.LT.1 ) LINE (l)10
IF(K.LT.1 ) KMAX=KAXIS
IF(K.LT.1) GO TO 89
LINE(K )=STAR
KMAX=KAX IS
UF(K.GT KMAX) KMAX=K

89 WRITE(6,90) B(j2).A (j2) ,(LlNE(N4),N4=1,KMAX)
90 FORMAT(1 G13.692X G13.6,2X,61A1)

IF (K.GTo6r) LINE (61)=BLANK
IF(K.GT.61) GO TO 100
IF(K*LT.1) LINE Cl)=BLANK
IF(K.LT.1) GO TO 100
I IN E (K )BLANK

100 CONTINUE
GO TO 145

110 CONTINUE
DO 120 J=1,61
LINE(J)=D0T

120 CONTINUE
X=60.*((ACMIN)-YMIN)/RANGE)
IF( IISC.EQ.0 .AND.YMIN.GT.O. ) X=60.*(A (J2)/RANGE)
IF(SYNME) X:30.*CA(J2)/RANGE )+30.
KPI zx +1 .5
IFCKP1 .GT.61 ) LINE C61)=Hl
IF(KP1 .LT.1) LINE (1 )=LO
IF(KP1.LT.1.OR.KP1.GT.61) GO TO 129
LINE(KP1 )STAR

129 bRITE(6,130) B(J2),A(J2)vLINE
130 FORMAT(1X 613.6,2XqG13*6,2X,61A1)

DO 14 0 1 = 6 1
LIN E(J )=BLANK

140 CONTINUE
GO TO 100

145 DO 150 K5=1,3
aRITE (6,50)

150 CONTINUE
EMA X=YMA X
EMlN=YM IN
RE TUR N

160 CONTINUE
WRITE(6 170)

170 FORPATtiOx,34HHAVE A MISTAKE INPUTT1NG EMIN&EMAX)
RETURN
J7 ND

SE IBR'o1'INE SHlIK[. (Con t j umed )
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SUBROUTINE RPRD
COM4MON/S IGCMP/T ,NPTAU (3) ,M ,SNR
COMMON/CMPLOOIXSZ YSZXORGtYORGH
COMMONICMPL01/Q(132)AMA?.11263,YMAX

CCOMMON/CMPLO2/I FORMNCOPY ,LNF ,NOSYMIWNDW,IWNDF
C*** GIVE THE SIZE OF X AND Y NEEDED FOR THIS PLOT
C,

CALL PLOTSCXSZYSZ .IFORM.NCOPY)
C
C

N I*P
C
C**** SPECIFY THICKNESS OF THE FRAME

C

C*** SET THE ORIGIN AT THE POINT I.,l. THEN FROM NOW
C**** ON IT WOULD BE POINT 00,00

C

C
C
C** DRAW THE FRAME FOR THE SI ZE OF THE PAPER

CALL PLOT(XSZ,O.O,2)
CALL PLOT(XSZ,YSZ.3)
CALL PLOT(O O,YSZ 2)
CALL PLOT (O.O, .O,2)

C
C
C
C*** SET NEW ORIGIN

C

C
C'" RWTECODNTSFRTEPO
C

XCO R8.
YCOR=5.
CALL SCALE(Q(i),XCOR,N,i)
CALL SCALE (AMAG (1),YCOR ,Nt,1)
NI :N41

AMAG(N2)=YMAX/YCOR
Q(N21=TIXCOR
CALL AXIS(0.O,O.O,12H CEPSTRUM 912,YCOR,90.,

*AMAGCIN1) AMAG(NM)
CALL AXI~CO.o.o ,l 7HQUEFRENCY SECONDS@-17,XCOR,
*OO.O,Q (Ni) ,Q(N;)

C
C

CALL LINEWICO)

C'"'* PLOTING PROCESS
CALL LINE(Q(1 ),AMAGC1 ),NI,LNF,NOSYM,H)

SUROUTINl RIPRl
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C**** PROCEDURE TO WRITE RELATED PARAMETERS ONTEPLOT
C

CALL PLOT (0.0,0.0,-3)
W=.0875
XW=2.0O
1F(TAU(3).NE .0.0) XW=1.5
YW=-. 75
CALL SYMBOL(XW,YWh*6HlWNDW=,OO.OO ,6,O)
XW=Xw.6.*w
FWzFLOAT (IWN OW)
FF =FLOAT ( I wNDF)
FN=FLOAT (N)
CALL NUM8ER(XWYWqH,FWq,0O,1 0)

CALL SYMBOLCXWIYW,146HIWNDF =,OO.0O,6,O)
XWz XW .6 *W
CALL NUMBER(XW,YW 1H ,FF ,0.O,-1,O)
xwzxw~w*4.
CALL SYMBOLXW,YW,H,2HN,0O.0O.2.0)
xw=xw*2.*w
CALL NUMBER(XWYW,H ,FN,O.09-1 ,O)

CALL SYM8OL(XW,YW ,I,5HTAUI=,00.00,5,0)
xw*Xw*6.*W
CALL NUMBER(XW,YW,14,TAU(1 ),0.O,.3,0)

CALL S YMBOL( XW, YW ,H~,5HTAU2=.00 .00.5,0)
XW=XW*6. 'W
CALL NUMBER(XW,YW HTAU(2 )9.0O,3,O)
CALL PLOT( 0 O.-1)
VC0R=YCOR1.i*H
IFCTAU(3).NE.O.O) GO TO 10
XWzXW4 5**~W
CALL SYMBOL(XW,YW ,N,5H SNR .00.00,5,0)
XW=Xw+5.*W
CALL NUMER(XWY,h,SNR,O.0 ,-3,O)
CALL SYMBOL(1.0 YCOR,H,74H COS(200*PI.(T-TAUl))*

.S(200*Pl.(T-TAuh)).U(T-TAU2)4NOISE,0.0,74,0)
GO TO 20

10 CONTINUE
XW=XW*6.*W
CALL SYMBOL(XW,YW ,H,5HTAU3 900.00,5,0)
XW=XW*6 .'W
CALL NUMBERCXW,YW,H ,TAU(3),0.O,*3,O)

CALL S YMBOL(XW#YwH .5H SNR=,O0.O0,590)

CALL NUMBER(XW,YWHtSNR 09O,*3 0)
CALL SYMBOL(.5YO ,H .1 O ( 0'PI(T-TAUl))'U(T

*0.PI*(T-TAU2;)U(T-1AU2)..2S.COS(2O00Pl'(T-TAU3)*U
'0.00,104,0)

20 CON71NUE
CALL PLOT(O090.0,999)
RETURN
END

SCIBROU'TNiF RklR) (Cont inued)
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KEY TO THE FIGURES

This appendix presents time variation of several signals which

have been discussed in detail in the main text. Following each

signal waveform is its cepstral plot. In most of the signal plots

or their cepstral plots the equation of the composite signal is

written. If this equation is broken in "+" points, each part

will give the equation of the individual waveforms.

Several notations have been used for the plots which have

following meanings.

IWNOW = 0 E no windowing process is performed in time domain

IWNOW = I U windowing process is performed in time domain

IWNOF = 0 no smoothing is performed in frequency domain

IWNOF = 1 smoothing process if performed in frequency domain

N total number of sample points

.thTAPI= beginning time for the i signal

In the fol lwin, pagCS figures C-I throulgh (;-, are cosine

waveforms and their cepstral 1 p1 ots. The signals have different

starting times and also thle number of echoes wiich makeup the

somposite signal is differnt in some cases. '1l1e equat ion for the

signals is given on each plot. In ill plots N=1024, WNI)W=(), ;ind

IP,!NDF=(I except if t hey arc (efintud ot1)hI rwi ,S .

4
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Figures G-6 through 0-10 pictorially show damped cosine wave-

forms and their cepstral plots. The starting time of the signals

as well as the number of them might be different for each case.

The equation for the composite signal is

(t-T) e - 2 (t -rT) cos (200n (t-TI) u (t-T 1 )

+ (t-r 2 ) e 2(t-T2 ) cos (200 TT (t-T 2 )) u (t-T 2 )

t

+ (tT 3 )e -2(t-T 3 )cos (200 1T (t-T 3 )) u (t-T 3)

with the third component being zero where only one echo signal has

been studied. If the above equation is broken in 'Y' points each

part will give the equation of the individual signals. In all

figures, IWNDW=-, IWNDF=O, and N=1024 except if they are defined

otherwise.
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Figures G-I through G-15 present the damped exponential

waveforms with their cepstral plots. The damping coefficient for

all of these plots is 30 , and the whole period of study is .5

second. The equation of the composite signal is given in each

plot, which if broken in "+" points will result in giving the

equation of each individual signal. In all figures N-1024,

IWNDW=0, and IWNDF=O except if they are defined otherwise.

kI.
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In the following pages the following figures have different

significances. Figure G-16 shows the effect of under sampling, its

sampling rate is 452 samples/sec. It does not represent the cosine

waveform in its exact shape. Figure C-16 shows the cepstrum plot

of Figure G-16a, which seems to be noisy. Figure G-16c is the

enhanced version of Figure G-16b, meaning that after taking the

Fourier transform of the cosine signal for the first time, the

value of two impulses have been set equal to one. As we see

from Figure G-16c there is some improvement.

Figures G-17a and G-17b show effect of having different

strength for the echoes. As these Figures show there is no

difference in the cepstral property of the plots except that the

strength of the peaks has been changed accordingly.

Figures C-18a, G-18b, and C-18c are the cepstral plots when

there are three echoes besides the original signal. As is obvious

from these cepstral plots, it will be very hard to distinguish the

exact locations of each epoch or echo delay time. In all figures

N=1024, IWNDW=O, and IWNDF=O except if they are defined otherwise.
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Figures G-19 and G-20 show damped cosine waveforms with their

respective cepstral plots for different damping coefficients. In

all figures N1024, IWNDW=O, and IWNDF=O, except if they are

defined otherwise.

4

~1
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LITERATURE SURVEY

In an effort to appraise the state of development of cepstrum

technique, an extensive survey of cepstrum related literature was

undertaken. The dates of the survey extends from the beginning of

publication of a paper by Bogert, et al, in 1963 to the present

time. The majority of this literature was available in the library

of the Mississippi State University, or have been furnished to the

author through the Inter Library Loan. The sources of the articles

and the inclusive search dates are as follows:

1. Dissertation Abstract International, B, The Science and

Engineering, January 1963 through August 1980.

2. Geophysics, January 1960 through August 1980.

3. Geophysics Journal of Royal Astronomical Society, 1970

4. Institute of Electrical and Electronics Engineers Proceedings,

January 1963 through August 1980.

5. Institute of Electrical and Electronics Engineers Spectrum,
January 1963 through August 1980.

6. Institute of Electrical and Electronics Engineers Transactions
on Acoustic Speech and Signal Processing formerly Institute
of Electrical and Electronics Engineers Transactions on Audio
and Electroacoustics, January 1963 through August 1980.

7. Institute of Electrical and Electronics Engineers Transactions
On Communications, January 1963 through August 1980.

8. Institute of Electrical and Electronics Engineers Transactions
on Education, March 1969.

9. Institute of Electrical and Electronics Engineers Transactions
on Information Theory, January 1963 through August 1980.

10. Instituteof Electrical and Electronics Engineers Transactions
on Systems Man and Cybernetics, January 1972.
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11. Journal of Acoustical Society of America, January 1963
through August 1980.

12. Journal of Geophysical Research, October 1970.

13. Journal of Sound and Vibration, January 1974 through August
1980.

14. Report on 8th Annual Southeastern Symposium on System Theory,

April 1976.

15. Simulation, March 1969.

16. The Bell System Technical Journal, January 1963 through

August 1980.

For the purpose of making a meaningful summary, the afore-

mentioned topics will be broken in two categories: (1) Fourier

transform , specially the Fast Fourier Transform (FFT), (2) Cepstrum

or the related topics. Included in the summary of each category

will be a list of the most pertinent articles with a synopsis.
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FOURIER TRANSFORM

The fourier transform of f(x) is defined as

f f(x) e-J 2Txs dx

this integral, which is a function of s, may be written F(s).

Transforming F(s) by the same formula, we have

f F(s) e - j 2 wS ds

when f(x) is an even function of x, that is, when f(x) = f(-x),

the repeated transformation yields f(w), the same function with

which we began. This is a cyclical property (821 of the Fourier

transformation, and since the cycle is of two steps, the reciprocal

property is implied: if F(s) is the Fourier transform of f(x),

then f(x) is the Fourier transform of F(s).

The cyclical and reciprocal properties are imperfect, however,

because when f(x) is odd i.e., when f(x) = -f(-x)' the repeated

transformation yields f(-w). In general, whether f(x) is even or

odd or neither, repeated transformation yields f(-w).

The customary formula exhibiting the reversibility of the

Fourier transformation are [821

F(s) = f(x) e jsdx

f(x) = f F(s) e j 2sx

In this form, two succesive transformations are made to yield the

original function.
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It may happen that function values are given only at discrete

values of the independent variable (pulses), as which physical

measurements made at regular time intervals. Regardless of the

form of the given function, if the transform is evaluated by

numerical computing, the values of the transform will be available

only at discrete intervals. We often think of this as though an

underlying function of a continuous variable really exists and we

are approximating it.

The rules for finding the frequency response samples from

the pulse response and vice-versa were called the discrete Fourier

Transform (DFT) and Inverse Discrete Fourier Transform (IDFT),

respectively [81).

The Discrete Fourier Transform or DFT of the N-point sequence

fo'fl .... fN-1 is defined as the N-point sequence.

N-I -12 k

k n=0

The inverse discrete Fourier transform formula or IDFT is

N-I
f IDFT IFk] = Fk e jn

n =Nk=0 -

n = 0,1,2,...N-1

In 1965 a method of computing discrete Fourier transforis

suddenly became widely known (J.W. Cooley and J. W. Tukey, math.

comput, vol. 19, April 1965, pp. 297-301) which revolutionized many

fields where onerous compting was an impediment to progress.
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Following is a chronological list of some 
of the most

pertinent articles related to Fourier transform (FT) and Fast

Fourier Transform (FFT). A brief synopsis is included with each

article in this list.

1. Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D.,
Kaenel, R. A., Lang, W. W., Maling, Jr. C. C., Nelson, D. E.,
Rader, C. M. and P. W. Welch, "What is Fast Fourier Transform?",
IEEE Transactions on Audio and Electroacoustics, Vol. Au-15,
N8. 2, pp. 45-55, June 1967.

In this paper, the discrete Fourier transform of a

time series is defined, some of its properties are dis-

cussed, the associated fast method (Fast Fourier Transform)

for computing this transform is derived, and some of the

computational aspects of the methods are presented.

2. Cooley, J. W., Lewis, P. A. W. and P. D. Welch, "Historical
Notes on the Fast Fourier Transform", IEEE Transactions on
Audio and Electroacoustics, Vol. Au-15, No.2, pp.76-84,
June 1967.

In this paper, the contributions of many investigators

are described and placed in historical perspective.

3. Rader, C. M., "Discrete Fourier Transforms When the Number of
Data Samples is Prime", IEEE Proceedings, Vol. 56, No. 5,

pp. 1107-1108, June 1968.

The discrete Fourier transform of a sequence of N points

where N is a prime number, is shown to be essentially a

circular correlation. This can be recognized by rearranging

the members of the sequence and the transform accoring to a

rule involving a primitive root of N. This observation permits

this discrete Fourier transform to be computed by means of a
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fast Fourier transform algorithm, with the associated

increase in speed, even through N is prime.

4. Cooley, J. W., Lewis, P.A.W. and P. D. Welch, "The Fast Fourier
Transform and its Applications", IEEE Transactions on Education,
Vol. 12, No. 1, pp. 27-34, March 1969.

A description of the algorithm for FFT and its

programming is given followed by a theorem relating

its operands, the finite sample sequences, to the

continuous functions they often are intuned to

approximate. An analysis of the error due to

discrete sampling over finite ranges is given in

terms of aliasing. Procedures for computing Fourier

integrals, convolution and lagged products are outlined.

5. Bergland, G. D., "A Radix-Eight Fast Fourier Transform
Subroutine for Real-Valued Series", IEEE Transactions
on Audio and Electroacoustics, Vol. AU-17, No. 2,
pp. 138-144, June 1969.

Fast Fourier Analysis (FFA) and fast Fourier

synthesis (FFS) algorithms are developed for computing

the discrete Fourier transform of a real series, and

for synthesizing a real series from its complex Fourier

coefficients.

6. Singleton, R. C., "A Short Bibliography on the Fast Fourier
Transform", IEEE Transactions on Audio and Electroacoustics,
Vol. Au-17, No. 2, pp. l66-16u,Jan. 1969.

A chronologicallv listed name of papers on Fast Fourier

Transform", nop. 166-169, Januarv 1q69.



197

7. Singleton, R. C., "An Algorithm for Computing the Mixed Radix
Fast Fourier Transform", IEEE Transactions on Audio and Elec-
troacoustics, Vol. Au-17, No. 2, pp. 93-103, June 1969.

The paper presents an algorithm for computing the

fast Fourier transform based on a method proposed by Cooley

and Tukey. As in their algorithm, the dimension n of

transform is factored (if possible), and n/p elementary

transforms of dimension are computed for each factor p

of n. The algorithm is described mathematically and

illustrated by a Fortran subroutine.

8. Uhrich, M. L., "Fast Fourier Transforms Without Sorting",
IEEE Transactions on Audio and Electroacoustics, Vol. Au-17,
No. 2, pp. 170-172, June 1969.

9. Markel, J. D., "FFT Pruning", IEEE Transactions on Audio and
Electroacoustics, Vol. Au-19, No. 4, pp. 305-311, December 1971.

There are basically four modifications of the N=2m point

FFT algorithm developed by Cooley and Tukey which give

improved computational efficiency. It is shown that for

situations in which the relative number of zero-valued

samples is quite large, significant time saving can be

obtained by pruning the FFT algorithm.

10. Harris, F. J., "On the Use of Windows for Harmonic Analysis
With the Discrete Fourier Transform", IEEE Proceedings, Vol. 66,
No. 1, pp. 51-83, January 1978.

This paper makes available a concise review of data

windows and their effect on detection of harmonic signals

in the presence of broad-band noise, and in the presence

of nearby strong harmonic interference. Also calls attention

I.
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to a number of common errors in the application of windows

when used with the Fast Fourier Transform.

In addition to the ten articles listed above, the following

references to the bibliography in Appendix A are also related to

Fourier transform or Fast Fourier Transform (FFT): 1,12,15,16,61,

66,69,70,77,78,79,80,81,and 82.

CEPSTRUM AND DECONVOLUTION

The first paper on the cepstrum has been published by Bogert,

et al. [3] in 1963 and this has been the first paper in inventing

and using this word a thorough investigation of the subject has

been done through the text. The papers mainly deal with problems

of power cepstrum. Also included are papers related to the complex

cepstrum as defined by Schaffer [16]. The following list of

articles applies to cepstrum analysis and related subjects.

1. Bogert, B. P., Healy, M. J. R. and J. W. Tukey, "The
Quefrency Analysis of Time Series for Echoes: Cepstrum,
Pseudo-Autocovariance, Cross-Cepstrum and Saphe Cracking",
in Pro. Symp. on Time Series Analysis, M. Rosenblatt, Ed.,
New York, Wiley, Chap. 15, pp. 209-243, 1963.

The first published paper on cepstrum (power cepstrum)

brings up the question of echoes and how to detect them, also

compares the cepstrum method with autocorrelation. The

authors define new terms paraphrased from known terminologies

such as cepstrum which is a paraphrased word from spectrum.

ALL-



199

2. Noll, A. M., "Short-Time Spectrum and Cepstrum, Techniques
for Vocal-Pitch Detection", J. Acoust. Soc. Am., Vol. 36,
No. 2, pp. 296-302, February 1964.

In this paper the author is trying to use the newly

familiar subject of cepstrum for vocal-pitch detection in

speech. The cepstrum of a speech signal has a peak

corresponding to the fundamental period for voice speech

but no peak for unvoiced speech. Thus a cepstrum analyzer

can function both as a pitch and as voiced-unvoiced

detector.

3. Noll, A. M., "Clipstrum Pitch Determination", J. Acoust.
Soc. Am., Vol. 44, No. 6, pp. 1585-1591, December 1968.

In this paper the author presents a new method of

pitch Determination similar to the cepstrum except that

both the time signal and the log power spectrum are

infinitely peak clipped before spectrum analysis has

been simulated on a digital computer. It shows the

clipping in the clipstrum might offer some advantages

over cepstrum analysis in certain digital hardware

implementations since multiplications could be replaced

with addition or subtractions.

4. Childers, D. C., Varga, R. S. and N. W. Perry, Jr.,
"Composite Signal Decomposition", IEEE Transactions on
Audio and Electroacoustics, Vol. Au-18, No. 4, pp. 461-477,
December 1970.

This paper presents a technique for decomposin2_

a composite signal, which consists of the superposition

of known miltiple signals overlapping in time. digital

Data processing problems such as filter rcal izability,
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signal resolution capability, the effect of additive

noise, frequency (spectrum) compatibility between

signal waveform and filter response pulse, and possible

additional processing in certain cases are discussed.

5. Kemerait, R. C., and D. G. Childers, "Signal Detection and
Extraction by Cepstrum Techniques", IEEE Transactions on
Information Theory, Vol. IT-18, No. 6, pp. 745-759, November
1972.

Digital data-processing problems such as the

detection of multiple echoes, various methods of linear

filtering the complex cepstrum the picket-fence phenomenon,

minimum-maximum phase situation, and amplitude-versus

phase-smoothing for additive-noise cases are examined

empirically and where possible theoretically, and are

discussed.

6. Hassab, J. C., "Time Delay Processing Near the Ocean Surface",

J. Sound and Vibration, Vol. 35, No. 4, pp. 489-501, 1974.

A study of a simple multi-path channel near the ocean

surface where a direct path and a surface-reflected path

link the source to the receiver. By using autocorrelation

and cepstrum processing, extraction of the difference in

arrival times between two paths, i.e. time delay, from a

priori unknown signals is studied.

7. Hassab, J. C. and R. Boucher, "A Probabilistic Analysis of
Time Delay Extraction by Cepstrum in Stationary Gaussian
Noise", IEEE Transactions on Information Theoyr, Vol. IT-22,
No. 4, July 1976.
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A probabilistic analysis is conducted dealing with

the effect of stationary Gaussian noise on the characteristics

of such a nonlinear processor. The expected mean and

standard deviation of reduction in the peak level at

(time delay) due to noise are analytically described.

The results point out the dependence of statistical

measures upon the pointwise variation of input signal

to noise spectra.

8. Childers, D. G., Skinner, D. P. and R. C. Kemerait, "The
Cepstrum: A Guide to Processing", IEEE Proceedings, Vol. 65,
No. 10, October 1977.

This paper is a pragmatic tutorial review of the

cepstrum literature focusing on data processing. The

effects of various forms of liftering the cepstrum are

described. The results obtained by applying witening

and trend removal techniques to the spectrum prior to

the calculation of the cepstrum are discussed. A good

many numbers of references are given in this paper.

9. Dudgeon, D. E., "The Computation of Two-Dimensional Cepstra",
IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. ASSP-25, No. 6, December 1977.

This paper explores two methods of computing the

complex cepstrum of a two-dimensional signal. It considers

the definitions of two-dimensional causality and two-

dimensional minimum phase signals. It explores the relation-

ship among the nonzero regions of a signal, its inverse, and

its cepstrum.
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10. Ingels, F. M., "Cepstrum Analysis Techniques for Possible
Application to Seismic/Acoustic Ranging", Report No.
FA9620-79-C-0038, Mississippi State University, August 1979.

This report is concerned with ranging problems. It

studies use of one sensor to determine the range. It

advocates cepstral analysis to determine the differences

in time of arrival of two signals detected with the same

sensor, also shows some results of applying the cepstrum

technique.

Other papers, articles, letters, or books which are related

to the cepstrum technique are listed in the bibliography of

Appendix A. The following list of numbers indicate those entries

in the bibliography: 1,5,6,8,9,10,11,12,16,25,26,27,29,31,32,34,

35,37,39,40,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,60,

67,71,73,74,77,79,80, and 81.

A COMPILED BIBLIOGRAPHY ON CEPSTRUM AD RELATED TOPICS

The following bibliography concerns the subjects of cepstrum

homomorphic deconvolution, Fourier transform, Fast Fourier Transform

(FFT), power spectrum and applications. The bibliography is

divided into two sections as follows: (1) articles published in

journals, (2) books. The entries are listed chronologically

except when the month and the year of some publications are the

same in which case the listing is alphabetical. An alphabetical

author's index follows the publications listing with reference to

numbered articles of the bibliography.
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